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Preface

This book is the second volume of a series of books on the topic of strongly
interacting quantum systems. The first volume appeared in 2023, and deals
with few-body quantum systems. Throughout this book, we shall refer to it
simply as volume 1.

This second volume is concerned with strongly interacting quantum
many-body systems. There are a vast amount of basic and advanced
textbooks available on quantum many-body physics. Almost any preface
deals with this issue, and answers it with the question ‘another book on
many-body physics?’. The answer, always affirmative, goes on to justify the
need for yet another book on the topic. We shall do no such thing. This is
not a book on many-body physics, but on the use of few-body machinery to
tackle non-perturbative physics in many-body systems. It often turns out
that few-particle solutions are sufficient to explain a plethora of many-body
phenomenology. Sometimes, quantitative predictions can be made, while
other times relations or qualitative—but highly non-perturbative—estimates
are made. This field is, admittedly, quite niche, and we do not know of any
other textbook on the subject. It can be difficult at times, and so we have
included as many details in our derivations and calculations as possible,
following the same philosophy as in volume 1. Although not always
necessary, we recommend the reader to carefully study volume 1 before
attempting to read this book.

We have chosen a number of topics that we think are most
representative of the approach we follow. We have left out important topics
and systems that are very interesting, but we are sure that these pages will
help the reader to develop this field further, should they be interested in
doing so.

We thank our Editor at IOP Publishing, Phoebe Hooper, for her help and
persistence. We could neither have started nor finished this project without
the support of many colleagues with whom we have discussed and
collaborated in this and other topics, and the funding agencies that have
supported our work. We would like to thank our colleagues C W Duncan, P



Öhberg, L G Phillips, H Zhai, V Pastukhov, A G Volosniev, O V
Marchukov, D V Fedorov, A S Jensen, J R Armstrong, H-W Hammer, K
Mølmer, D Petrosyan, A Saenz, K Fraser, B Juliá-Díaz, I Morera, M A
García-March, S Mukherjee, E Andersson, M J Edmonds, L Santos, Y
Nishida, Y Sekino, F F Bellotti, T Frederico, M T Yamashita, L Tomio, J B
Hofmann, X Chen, N Barnea, B Bazak, D Pérez-Cruz and X Cui.

We acknowledge support from the Ramón y Cajal programme, Spanish
Ministry of Science and Innovation through grant number RYC2020-
029961-I, as well as the national research and development grant PID2021-
126039NA-I00.

Manuel Valiente
Murcia, Spain
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Aarhus, Denmark
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Chapter 1

Short-distance universality

One of the most important and useful concepts in physics is the separation of scales. Within a
complex system, several time, distance or energy scales may be present, and very distinct phenomena
may be associated with the different physical scales in the problem. As an example from everyday
life, we may stare at a light bulb. Our brains will interpret the light intensity that reaches our eyes
essentially as a constant. However, this is not the whole reality of the situation. The AC current
flowing through it oscillates at 50 Hz here in Europe, which lies around the critical flicker fusion
frequency for humans. You would certainly be very uncomfortable studying this book with 20 Hz
current! This very simple example tells us that, depending on the scale we are probing, we may see
different levels of detail or perceive different physical phenomena. In this chapter, we will explore
the separation of distance or momentum scales in quantum many-body systems and, moreover,
extract important information that relates, non-perturbatively, global properties of these systems to
their short-distance, or large-momentum behaviours.

We will begin with a number of general properties of two-body systems, which were left out of
Volume 1 as they are most relevant here. Then, we will move on to set a number of important length
scales in atomic and nuclear physics. Finally, we shall derive many useful, non-perturbative relations
that are commonly englobed in the topic of short-distance universality, both in their weak and strong
versions.

1.1 Two-body physics at short distances
Let us consider two identical, non-relativistic particles with mass m interacting via a pairwise
potential V (r), with r = r1 − r2 their relative position. In D spatial dimensions, the stationary
Schrödinger equation in the relative coordinate is given by

−
ℏ2

2μ
∇2ψ+ V (r)ψ = Eψ,

where μ = m/2 is the reduced mass, and ∇2 is the D-dimensional Laplacian. If the interaction is
hyperspherically symmetric, as we will assume from here on, then the relative wave functions
separate as

ψ(r) = R(r)Y
→l
(→θ).

Above, r is the hyperradius, →l  and →θ  represent, respectively, D− 1 angular momentum quantum
numbers, and D− 1 angles, while Y

→l
 are hyperspherical harmonics. For D = 3, we have 

Y
→l
≡ Yl,m(θ,ϕ); for D = 2, Y

→l
≡ exp(imϕ)/√2π; in one spatial dimension, angular momentum



(1.3)

(1.4)

(1.5)

(1.6)

channels reduce to parity, and we have Y
→l
= (sgn(x))P, where P = 0, 1 is the parity quantum

number.
The separation of parity and radial coordinate for D = 1 is typically uncommon, so we derive it

here, and it will prove useful in the following chapter. The radial coordinate is simply r =∣ x ∣. The
Laplacian, since there is only one degree of freedom, is invariant with respect to the change 
x = sgn(x) ∣ x ∣, except at the origin, at which an appropriate boundary condition must be set. We
have

∇2 =
∂ 2

∂x2
=

∂ 2

∂∣ x ∣2
, ∀x ≠ 0.

Therefore, if the two-body interaction is regular, in the even channel, the Schrödinger equation is
reduced to

−
ℏ2

2μ
R′′(r) + V (r)R(r) = ER(r), r > 0,

together with the boundary conditions R(0) = φ0 for some finite φ0 ∈ C and either 

∫
∞

0
drR(r) < ∞ (bound states) or ∣ R(r) ∣ bounded as r → ∞ (scattering states). In the odd

channel, care must be taken a priori, since the behaviour at x = 0 is relevant. If the interaction
potential V (r) is regular, continuity of the wave function at x = 0 together with odd parity implies 
R(0) = 0 and, therefore, the Schrödinger equation becomes equation (1.4) with identical boundary
conditions as in the even-wave case, but with φ0 = 0. If the interaction is not regular, then we write
the wave function as ψ(x) = sgn(x)R(r), and after application of the Laplacian we see that

∂ 2

∂x2
[sgn(x)R(r)] = 2δ(r)R′(r) + sgn(x)R′′(r),

where δ(r) is the Dirac delta function, and where we have used the distributional identity 
δ′(r) = −δ(r)∂/∂r. The ‘radial’ Schrödinger equation reads, in this case (r ⩾ 0)

−
ℏ2

2μ
R′′(r) −

ℏ2

μ
δ(r)R′(r) + V (r)R(r) = ER(r).

Above, we have implicitly assumed that sgn(0) = 1, a choice that we term Shirokov’s choice, for
reasons that will be clear in the following chapter. Formally, equation (1.6) can have a solution if we
split the interaction potential as V (r) = Vreg(r) + VI(r), with VI(r) = (ℏ2/μ)δ(r)∂/∂r. In this case,
it reduces to equation (1.4) with V (r) replaced with Vreg(r), and with the boundary condition 
R(0) = φ0. That is, the problem with an irregular potential of the form described above leads to an
even-wave (or bosonic) problem with identical properties. The main consequence is that the full odd-
wave function ψ(x) = sgn(x)R(∣ x ∣) is discontinuous at x = 0.

In two dimensions, the radial wave function obeys the following Schrödinger equation for
angular quantum number m,



(1.7)

(1.8)

(1.9)

(1.10
)

(1.11
)

(1.12
)

−
ℏ2

2μ
[R′′(r) +

1

r
R′(r) −

m2

r2
R(r)]+ V (r)R(r) = ER(r).

In three dimensions, rewriting, as usual, the radial wave function R(r) = u(r)/r for r > 0 and 
R(0) = lim

r→0+
u(r)/r, the Schrödinger equation with angular momentum quantum numbers (l,m)

takes the form

−
ℏ2

2μ
u′′(r) + [V (r) +

ℏ2

2μ

l(l+ 1)

r2
]u(r) = Eu(r),

with the boundary condition u(0) = 0. Note that this is in one-to-one correspondence with the
regular, odd-wave, one-dimensional case.

We take a deeper look at the three-dimensional problem, and in the s-wave channel (l = 0).
Firstly, we notice that at low energies and short distances (r ⩽ r0), with

∣
V (r) −E

ℏ2/2μr20
∣ ≪ 1,

we may neglect the energy in equation (1.8) and work with E ≡ 0. Then, if u(r) ∼ ū(r) as r → 0 is
the asymptotic short-distance wave function, we have

ū′′(r)

ū(r)
≈

2μ

ℏ2
V (r), r → 0.

If the interaction potential is smooth at short distances (which is usually unphysical), we can
extract the short-distance asymptotics up to an arbitrary constant. For instance, let us consider an
exponential interaction of the form

V (r) =
ℏ2

2μ
v0e

−λr.

Expanding V (r) in Taylor series, 2μV (r)/ℏ2 = v0 ∑
k⩾0

λkrk/k!, as well as ū(r) = ∑
m⩾1

umr
m,

we get, up to the fourth power,

ū(r) = u1[r+
v0

6
r3 −

v0λ

12
r4]+O(r5).

To this order, the only finite-energy correction occurs at O(r3) where, instead of the coefficient
above, we obtain u1(v0 − ε)/6, with ε = 2μE/ℏ2. Therefore, neglecting the energy is a valid
assumption for ∣ v0 − ε ∣ r20 ≪ 1, as expected.

All of the above analysis is neat and correct. However, we need to ask ourselves whether the
distances at which an expansion such as that in equation (1.12) are valid also correspond to distances
that can be probed and, moreover, whether that would be at all useful. While we anticipate that such
expansions will not be very physically meaningful, we will postpone the analysis until after the
following and important theoretical interlude.
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)
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)

(1.15
)

(1.16
)

(1.17
)

(1.18
)

We continue setting l = 0 (s-waves) and zero energy. Now, however, we are going to assume that
the distance r between the particles is short as compared with some other length scale, R*, to be
specified later. We further assume that the particles are not so close together that the microscopic
details of the interaction potential play a role. That is, the particles lie at distances r ≫ r0, with r0
defined in equation (1.9), and r < R*, whatever R* might be. At zero energy, and if V (r) has a strict
finite range (V (r) = 0 for r > R0), then the wave function is in the long-distance asymptotic
regime, that is, u(r) ∝ r− a, with a the s-wave scattering length. It seems, then, reasonable, that the
short- and long-range behaviours of the two-body wave function may overlap depending on the
length scales at which the system is probed. Realistic two-body interactions, however, do not have a
strictly finite range, but have long-distance tails. In neutral atomic collisions, for instance, van der
Waals tails, which are proportional to r−6, are present. In general, let us consider asymptotic
potentials, V∞(r), such that, if r ⩾ r0 for some distance r0, they satisfy

∣
V (r) − V∞(r)

ℏ2/2μr2
∣ ≪ 1.

Considering that the above asymptotic condition is fulfilled and that r < R*, the zero-energy
Schrödinger equation is approximated as

−
ℏ2

2μ
ū′′(r) + V∞(r)ū(r) = 0, r0 ⩽ r < R*.

Above, and since we are only considering two particles, we may assume simply that r ⩾ r0. We
consider power-law tails, that is,

V∞(r) =
ℏ2gν

2μ
r−ν,

with ν > 0. We will see shortly further conditions on ν. Instead of the fully asymptotic wave
function, we consider the following ansatz

ū(r) = r− a(r),

where lim
r→∞

a(r) = a. Because the tails are power laws, we may expand a(r) as

a(r) = a+
a1

rη
+⋯,

with η > 0. Inserting the asymptotic wave function into the asymptotic Schrödinger equation,
and keeping order-by-order consistency, we find that η = ν − 3, which implies that ν > 3, and

a(r) = a+
gν

(ν − 3)(ν − 2)

1

rν−3
+⋯, ν > 3.

The above result coincides with the fact that no finite s-wave scattering length is found for
interactions that, at long distances, feature power laws that decay slower than r−3. This result,
however, can be strengthened when the tails are not monotonic. For instance, the Ruderman–Kittel–



(1.19
)

(1.20
)

(1.21
)

(1.22
)

(1.23
)

(1.24
)

(1.25
)

Kasuya–Yosida (RKKY) interaction, which is very important for the phenomenon of giant
magnetoresistance, features a power-law tail (with ν = 3) modulated by a sinusoidal function of the
interparticle distance. However, two non-relativistic particles interacting via such potential do feature
a finite scattering length. To see this, consider a spherically symmetric asymptotic interaction of the
form

V∞(r) =
ℏ2gν

2μ
cos(qr)r−ν,

where q is a wave number with dimensions of inverse length. We use now the following ansatz

a(r) = a1 cos(qr)r−η.

Proceeding just as for the monotonic power-law tails, we obtain η = ν − 1, implying ν > 1,
and

a(r) = a−
gν

q2
cos(qr)

rν−1
, ν > 1.

That is, the sinusoidal modulation leads to a more relaxed condition on the tails for the
scattering length to remain well defined.

We can also repeat the asymptotic analysis for two-body bound states. In this case, if the binding
energy is B2 = ℏ2λ2/2μ, with λ > 0, then we use the ansatz ū(r) = exp(−λ(r)r), with 
lim
r→∞

λ(r) = λ. For power-law asymptotic potentials, we expand λ(r) as

λ(r) = λ+
λ1

rν
+⋯,

with ν > 0. Proceeding analogously to zero-energy scattering, we find

λ(r) = λ+
gν

2(1 − ν)λ

1

rν
+⋯, ν > 1.

The critical value, ν = 1, corresponds to the Coulomb interaction, for which λ(r) = λ, as is
well-known. We have

ū(r) ∝ exp [−λr+
g6

10λr5
].

We can test the weak energy dependence at short ranges for the 4He2 molecule. A recent
experiment, reference [1], measured the radial probability density, in the relative coordinate, that is, 
∣ u(r) ∣2, using the technique known as Coulomb explosion. We compare the experimental result at
short distances with a numerical calculation at zero energy, using the Aziz interaction potential [2]. It
takes the form V (r) = εv(x), with x ≡ r/rm, and

v(x) = Ae−αx − [ C6

x6
+

C8

x8
+

C10

x10
]F(x),
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)
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)
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)
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)

The numerical constants for the potential are ε/kB = 10.8K, where kB is Boltzmann’s
constant, rm = 2.9673 Å, D = 1.241 314, A = 0.544 850, α = 13.353 384, C6 = 1.373 2412, 
C8 = 0.425 3785 and C10 = 0.178 100. For the calculation, we used ℏ2/2μ = 12.12K Å2/kB. In
figure 1.1, we plot the experimental data for the dimer together with ∣ u(R) ∣2 at zero energy
calculated for the Aziz potential. Clearly, they agree at short distances, and deviations beyond 
R ∼ 8 Å and up until R ∼ 20 Å can be attributed to the inadequacy of the Aziz potential at very low
energies, since it overestimates the scattering length by about 30%, and the interaction is already in
the asymptotic limit. To compare with the asymptotic wave function, yet at short distances, given the
scattering length a, and the coefficients C6 and C8, we can proceed as before and find, to this order
(see problem 1) a(r) = a+ a1r

−3 + a2r
−4 + a3r

−5, obtaining

a1 = −
g6

12
,

a2 =
g6a

20
,

a3 = −
g8

30
.

In figure 1.1, we see that the asymptotic wave function is accurate down to about rm ≈ 3 Å.

Figure 1.1. Radial probability density ∣ u(R) ∣2 for the 4 He dimer at short distances. Red dots
are the experimental results of reference [1]; blue solid line is the zero-energy calculation with
the Aziz potential, reference [2]; black solid line (from r = 3 Å) is the asymptotic result for the
long-range part of the Aziz potential, with scattering length a = 124.486 Å.

For completeness, we perform the asymptotic analysis for finite (positive) energies, for which the
requirements on the tails are also relaxed. For kr → ∞, with k the momentum satisfying 
E = ℏ2k2/2μ, we may employ the following ansatz for the asymptotic wave functions

F(x) = exp [−(1 −D/x)2], x < D,

= 1, x ⩾ D.
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ū(r) = sin(kr+ θk(r)),

where lim
r→∞

θk(r) = θk is the s-wave scattering phase shift at momentum k. Introducing

equation (1.30) into the asymptotic Schrödinger equation, we obtain the following non-linear
differential equation,

1

2
(θ′(r))2 + kθ′(r) +

2μV∞(r)

ℏ2
= 0.

With the reasonable assumptions that lim
r→∞

∣ θ′′(r)/V∞(r) ∣= lim
r→∞

∣ θ′′(r)/θ′(r) ∣= 0, equation

(1.31) is solved directly as

θk(r) = θk −
μ

ℏ2k
∫ drV∞(r).

As a convention, we choose the integration constant such that lim
r→∞

θk(r) = θk, the actual s-

wave scattering phase shift. Clearly, equation (1.32) gives, for power-law tails V∞(r) in equation
(1.15),

θk(r) = θk +
μ

ℏ2k

gν

ν − 1

1

rν−1
+⋯, ν > 1,

θk(r) = θk −
μ

ℏ2k
g1 log ∣ 2kr ∣ +⋯, ν = 1.

Sinusoidal modulations of the tails improve further the asymptotic behaviour, and we leave this
as an exercise for the reader (see problem 2).

With all of the above results, we will be in a good position to study short-range universality in
many-body systems. Before that, we look into important physical scales in atomic and nuclear
physics.

1.2 A matter of scales: atoms and nuclei
What defines asymptotic regions—be it short- or long-range—depends on the particular system of
interest, as well as the methods and energy ranges we use in our probes. Here, we take a few
representative examples in ultracold atomic gases, as well as nuclei.

Our first example is the neutral atomic 87 Rb. This is a bosonic atom, an ensemble of which was
the first Bose–Einstein condensate to be produced with ultracold alkali atoms. There are several
length scales that are relevant. Firstly, the mean square radius (rms) in its electronic ground state,
which is nothing but rms ≡ ⟨r2⟩

1/2. For the Rb atoms to be considered as point-like bosons, the
mean interparticle distances must be far greater than the rms. The next important length scale to
consider is the van der Waals length RvdW, which is characterised by the coefficient C6 that controls
the strength of the r−6 tail of the Rb–Rb Born–Oppenheimer interaction, that is,

V∞(r) = −
C6

r6
.

The van der Waals length is defined via
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)

RvdW =
1

2
( 2μC6

ℏ2
)

1/4

.

For R > RvdW, the scattering wave function reaches its asymptotic form. The last scale we
need, which we had denoted R*, is nothing but the typical interparticle distance. This is not specific
to the Rb atoms, but to the prepared density of the atomic gas. If the density is called ρ, then R*

scales as R* ∼ ρ−1/3.
Our second example is atomic 40K. This one is a fermion. The two spin states are accomplished

by mapping ∣ ↑⟩ =∣ 9/2,−7/2⟩ and ∣ ↓⟩ =∣ 9/2,−9/2⟩, where the first quantum number is the total
atomic spin f, while the second quantum number mf  is the projection along the magnetic field axis.
Here, the atom number density is given by ρ = 4πk3

F/3, so that the interparticle distance R* ∼ ρ−1/3

, just as before. The van der Waals length is different from the one for 87 Rb, since both mass and C6

are different.
Our third example concerns large, bound clusters of 4 He, where the interparticle distance is

related to the equilibrium density ρeq of the Helium droplet as R* ∼ ρ
−1/3
eq .

The last example is generic to atomic nuclei, which are bound clusters of neutrons and protons,
with average interparticle distances R* of the order of the range of the pion-exchange interaction 
rπ = ℏ/mπc ≈ 1.4 fm.

In table 1.1, we give estimates of these quantities for all the four examples just mentioned.

Table 1.1. Characteristic length scales for different systems.

87 Rb 40K 4 He Nuclei

R* 100 nm 3 × 105 nm 0.5 nm 2.4 fm

RvdW ∣ rπ 4.4 nm 3.4 nm 0.26 nm 1.4 fm

rms 0.24 nm 0.22 nm 0.03 nm 1.2A1/3 fm

1.3 Weak short-range universality
In this section we present the weak version of short-range universality. This occurs when the length
scale associated with the two-body interaction—be it the van der Waals length or the pion-exchange
range—is comparable with the interparticle spacing in the system R*. In the previous section, table
1.1, this is the situation in low-temperature 4 He as well as in atomic nuclei. We will begin with the
many-boson problem, corresponding to the example of 4 He, and then study the particularities of
spin-1/2 fermionic systems.

1.3.1 Many-boson problem
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The many-body Hamiltonian for N  non-relativistic spinless bosons of mass m interacting via
pairwise potentials is given by

H = −
ℏ2

2m

N

∑
i=1

∇2
i +

N

∑
i<j=1

V (ri − rj).

If we pick any two particles aside, say particles 1 and 2, we may split the Hamiltonian as 
H = H1,2 +H3,…,N +H, where H1,2 is the part of the Hamiltonian only involving particles 1 and
2, H3,…,N  the part only involving particles 3 to N , and H is their coupling, that is

H =
N

∑
j=3

[V (r1 − rj) + V (r2 − rj)]

If the distance ∣ r1 − r2 ∣→ 0, that is, when the distance between all particles is far greater than
the distance between particles 1 and 2, this separation implies that the eigenfunctions ψ of the
Hamiltonian factorize as

ψ(r1, r2,… , rN) → ϕ2(r12)A
(N)
2 (R12; {rk}

N
k=1).

Above, r12 = r1 − r2 is the relative coordinate, R12 = (r1 + r2)/2 is the centre of mass
coordinate for two particles, ϕ2(r12) is a two-body eigenstate, and A(N)

2
 depends on the centre of

mass coordinate of the 1-2 system as well as on the rest of the coordinates of the particles. Since we
have argued that, at least at low energies, the energy at which we evaluate the two-body, short-
distance state, is irrelevant, we may take ϕ2 as the zero-energy s-wave state or, in the case of bound
systems, such as 4 He, the two-body s-wave ground state. Note that, in the case of 87 Rb, the relevant
many-body states for a Bose–Einstein condensate are not the ground state of the system: 87 Rb
admits large numbers of deeply bound molecular states which, at very short ranges exhibit a wildly
oscillating wave functions with a large number of nodes. For bosonic helium molecules, however, the
ground state is very weakly bound—with a binding energy of about B2 ≈ 1.3 mK—and, obviously,
has no nodes. From now on, we will assume that ϕ2 is the two-body ground state of the system in the
relative coordinate.

To continue, we define the norm of A(N)
2

 as

⟨A(N)
2 ∣ A(N)

2 ⟩ ≡ ∫
N

∏
k=3

drkdR12∣A
(N)
2 (R12; {rk}

N
k=3)∣

2
,

and define the two-body contact as

C
(N)
2 ≡

N(N − 1)

2
⟨A

(N)
2 ∣ A

(N)
2 ⟩.

The above quantity is central to the study of short-range universality in quantum many-body
physics. Our objective now is to relate a number of measurable quantities at short distances with the
aforementioned contact.
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Pair density function. If the pairwise interaction potential is spherically symmetric, it is
convenient to define the pair density operator ρ̂ (N)

2 (r) as

ρ̂
(N)
2 (r) =

1

r2

N

∑
i<j=1

δ(rij − r),

where rij ≡∣ ri − rj ∣ is the distance between two particles, while r > 0. The pair density
function is defined as the expectation value of the pair density operator, that is

ρ
(N)
2 (r) ≡ ⟨ρ̂

(N)
2 (r)⟩.

The density function at short distances (r → 0) is estimated as follows

Defining ρ2(r) ≡ ∫ dΩ∣ ϕ2(r) ∣
2, we obtain the short-distance asymptotics

ρ
(N)
2 (r) → C

(N)
2 ρ2(r), r → 0.

We already have our first short-distance asymptotics which, as promised, relates known
quantities—the contact and the two-body ground state—to a many-body observable at short
distances.

Expectation value of the interaction. This is the simplest of relations. The expectation value of
any of the two-body interactions, if this has a short range, in the many-body state is simply

High-momentum limit of the momentum distribution. Probing short distances is essentially
equivalent to probing high momenta in a quantum many-body system. Therefore, we take a look now
at the one-body momentum distribution ρ(k) of the many-boson system. The simplest expression for
ρ(k) to work with is given by

ρ
(N)
2 (r) = ⟨ψ ∣ ρ̂

(N)
2 (r) ∣ ψ⟩ = ∫ dr1 ⋯ drN

1

r2

N

∑
i<j=1

δ(rij − r)∣ ψ(r1,… , rN) ∣
2

=
N(N − 1)

2
∫ dr12

1

r2
δ(r12 − r)∫

N

∏
k=3

drkdR12∣ ψ(r1,… , rN) ∣
2

→
N(N − 1)

2
∫ dr12

1

r2
δ(r12 − r)∣ ϕ2(r12) ∣

2

∫
N

∏
k=3

drkdR12∣ A
(N)
2 (R12; {rk}

N
k=3) ∣

2

= C
(N)
2 ∫ dΩ∣ ϕ2(r) ∣

2.

⟨ψ ∣ V (ri − rj) ∣ ψ⟩ = ∫ drρ
(N)
2 (r)V (r) = C

(N)
2 ∫ drρ2(r)V (r)

= C
(N)
2 ⟨ϕ2 ∣ V ∣ ϕ2⟩.
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At high momenta, only the short-range parts, with respect to r1, contribute significantly to the
integral I. Hence, as k → ∞,

where we have defined the Fourier transform of the two-body wave function

ϕ2(k) = ∫ drϕ2(r)e
−ik⋅r.

We now need the squared modulus of the asymptotic integral I in equation (1.48), which
contains two contributions, ∣ I ∣2 → ∣ ϕ̃2(k) ∣

2
(J1 + J2), with

J1 =
N

∑
j=2

∣A
(N)
2 (R1j; {rk}k≠1,j)∣

2
,

and

J2 =
N

∑
j≠ℓ=2

[A(N)
2 (R1j; {rk}k≠1,j)]*A

(N)
2 (R1ℓ; {rk}k≠1,ℓ)e

ik⋅rjℓ .

For large k, J2 oscillates rapidly and the space integrals in equation (1.47) are negligibly small.
Therefore, only J1 contributes in this limit to the momentum distribution, and we finally obtain

ρ(k) → ∣ ϕ̃2(k) ∣
2
N(N − 1)∫ dr2 … drN ∣A

(N)
2 (R12; {rk}

N
k=3)∣

2
, k → ∞.

The above integral relates the large-momentum tails of the momentum distribution with the
contact as

ρ(k) → 2C (N)
2 ∣ ϕ̃2(k) ∣

2
, k → ∞.

Static structure factor. The static structure factor S(k) is another relevant physical quantity
that can be experimentally probed. In fact, for 4 He, neutron scattering experiments, which measure 
S(k) up to momenta as large as 70 nm−1, have been available for over 40 years [3]. These large

ρ(k) = N ∫ dr2 … drN ∣∫ dr1e
−ik⋅r1ψ(r1,… , rN)∣

2

≡ N ∫ dr2 … drN ∣ I(k; {rj}
N
j=2) ∣

2
.

I(k; {rj}
N

j=2) →
N

∑
j=2

∫ dr1e
−ik⋅(r1−rj)e−ik⋅rjϕ2(r1j)A

(N)
2 (R1j; {rk}k≠1,j)

=
N

∑
j=2

∫ dr1je
−ik⋅r1jϕ2(r1j)A

(N)
2 (R1j; {rk}k≠1,j)

= ϕ̃2(k)
N

∑
j=2

e−ik⋅rjA
(N)
2 (R1j; {rk}k≠1,j),
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momenta allow for probing the inner structure of 4 He droplets and liquids at low temperature, where
the typical short-distance length scale is about 0.5 nm, see table 1.1. This fact, together with the
availability of very precise model potentials for 4 He–4 He interactions, allow us direct experimental
verification of the large-momentum tails of the structure factor. In this case, the analysis is
straightforward, and for spherically symmetric interactions, we obtain

S(k) → 1 +
8πC (N)

2

Nk
∫

∞

0

drr sin(kr)ρ2(r),

where ρ2(r) is defined right above equation (1.45).
We analyze now the contact using experimental data. We begin by extracting the contact for 4 He

at a temperature of 1.1 K, using the pair correlation function from reference [3] and the probability
density for the helium dimer from reference [1]. The contact can be obtained using equation (1.45),
which gives, in this case, C (N)

2 /N ≈ 210 in the thermodynamic limit, in agreement with the
diffusion Monte Carlo simulations of reference [4], that reported a value of C (N)

2 /N = 230 ± 25.
The comparison of equation (1.45) and the pair correlation function is shown in figure 1.2.

Figure 1.2. Pair correlation g(R) as a function of distance. Experimental pair correlation
function (open dots) of liquid 4 He at T = 1 K, from reference [3]. Red dots are the
normalized two-body pair density function, from reference [1], rescaled by the contact 
C (N)/N = 210. Solid lines are the same but for the zero-energy state with the Aziz potential,
both exact (blue) and asymptotic (black).

Before taking a look at the experimental data for the static structure factor of liquid 4 He, we can
analyze the general form of the asymptotic behaviour using the zero-energy asymptotic wave
function. Since ū(r) ∝ r− (a+ a1r

−3 + a2r
−4 + a3r

−5), then the integrand in equation (1.54)
contains the term

r∣ R(r) ∣2 →
∣ū(r)∣2

r
∝

(r− a)2

r
+∑

n⩾3

αn

rn
,
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where the first term on the right-hand-side corresponds with the zero-range limit, and the αn are
coefficients, whose particular forms are not of much relevance. For large k, the part containing
the zero-range limit gives a contribution to S(k) that is proportional to k−1. This, however, cannot be
the case, since the wave function at very short distances is essentially zero. The rest of the Fourier
transforms must be evaluated with a short-distance cutoff rc, since they are too divergent as r → 0.
This is, in any case, natural, since the HE–He interaction contains a short-distance hard core, beyond
which the wave functions vanish, around rc ≈ 2.5 Å. Therefore, we evaluate the integrals

I(n, k) =
1

k
∫

∞

rc

drr sin(kr)
1

rn
= kn−3 ∫

∞

krc

dz
sin z

zn−1
, n ⩾ 3.

The leading terms are given by

I(3, k) =
cos(krc)

(krc)
2

+O((krc)
3)

I(4, k) = 3rc
sin(krc)

(krc)
3

+O((krc)
4).

If we only keep the leading-order terms, we see that the structure factor should show damped
oscillations with period 2π/rc. The ‘zero-range’ term, if we include the short-distance cutoff, also
contributes as ∝ cos(krc)/(krc)

2. Therefore, the structure factor, at large k, in this approximation,
behaves as

S(k) → 1 +
8πC

(N)
2

N
(a2 + α3)

cos(krc)

(krc)
2

+O((krc)
−3).

This essentially means that, since in this approximation we do not have information about 
r → 0, there is a range of momenta, large but not extending to infinity, in which the structure factor
behaves as in equation (1.59). Indeed, we see in figure 1.3 that, for k in the range [2.5, 5] Å−1, the
structure factor is essentially an oscillating function. Beyond that point, we need the actual short-
distance two-body wave function.
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Figure 1.3. Static structure factor for liquid helium, with data from the experiments in
reference [3].

1.3.2 Spin-1/2 fermions
We study now short-range correlations for spin-1/2 fermions. These were the systems originally
studied by Tan, resulting in the so-called Tan’s relations, in the zero-range limit, valid for ultracold
atomic systems [5–7]. We begin, however, with weak universality, and connect with Tan’s and
subsequent work in the following section.

A many-body eigenstate for spin-1/2 fermions, in the first quantization and in the position
representation, has the form ψ(r1σ1, r2σ2,… , rNσN), where σi (i = 1, 2,… ,N) is the z-
projection of the spin of particle i. As such, we will denote σi = 1/2 ≡ ↑, and σi = −1/2 ≡ ↓, and
call these spin-up and spin-down, respectively. In general, if there are no spin flipping terms in the
Hamiltonian, the total spin projection is conserved. When this is the case, N = N↑ +N↓, with N↑

the conserved number of spin-up particles, and equivalently for N↓, the number of spin-down
particles. Before proceeding, we shall call the two-body ground state for antiparallel spins in the
relative coordinate ϕ↑↓(r), which is typically a singlet (unless, for instance, there are external
magnetic fields). If the Lagrangian is SU(2)-symmetric, then the two-body ground state in the
parallel-spin sector is unique and given by ϕ↑↑(r) = ϕ↓↓(r). In the many-body problem, we will
choose the first N↑ particle labels to correspond to spin-up fermions, and i = N↑ + 1,… ,N  to spin-
down fermions.

We consider the many-body system to evolve according to the Schrödinger equation with
Hamiltonian (1.37), which is independent of spin. When two particles i and j approach each other,
the wave function is factorized as

ψ(r1↑,… , rN↓) → ϕσiσj
(rij)Aσiσj

(Rij; {rk}k≠i,j), rij → 0.

We define now three different contacts, namely C↑↓, C↑↑ and C↓↓. Note that, in general, if 
N↑ ≠ N↓, it will hold that C↑↑ ≠ C↓↓. The definitions are as follows

C↑↓ = N↑N↓⟨A↑↓ ∣ A↑↓⟩,

Cσσ =
Nσ(Nσ − 1)

2
⟨Aσσ ∣ Aσσ⟩, σ = ↑, ↓,

where the norms of the residual wave functions Aσσ′ are defined as in equation (1.40). We
proceed now to study short-range correlations in the different spin channels.

Pair density function. The pair density operator, equation (1.42), can be split into three terms,
namely ρ̂ (N)

2 (r) ≡ ρ̂ ↑↓(r) + ρ̂ ↑↑(r) + ρ̂ ↓↓(r). Explicitly, these are defined as

ρ̂ ↑↓(r) =
1

r2

N↑

∑
i=1

N

∑
j=N↑+1

δ(rij − r),
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ρ̂ ↑↑(r) =
1

r2

N↑

∑
i<j=1

δ(rij − r),

ρ̂ ↓↓(r) =
1

r2

N↑+1

∑
i<j=1

δ(rij − r)

Following the analysis done in the previous section, equation (1.44), we arrive at similar
expressions for the short-range limit of the two-body density functions 
ρ
(N)
2 (r) = ⟨ρ̂

(N)
2 (r)⟩ = ρ↑↓(r) + ρ↑↑(r) + ρ↓↓(r), as

ρ
(N)
2 (r) → C↑↓ρ

↑↓
2 (r) + C↑↑ρ

↑↑
2 (r) + C↓↓ρ

↓↓
2 (r), r → 0.

where the two-body densities for two particles are defined analogously to the bosonic case, as

ρσσ′2 (r) ≡ ∫ dΩ∣ ϕσσ′(r) ∣
2.

Expectation value of the interaction. For interactions with SU(2) symmetry, we immediately
obtain

For a spin-balanced system (N↑ = N↓ = N/2), and in the thermodynamic limit (N → ∞), we
have that C↑↑ = C↓↓ and the result simplifies to

1

( )

N

∑
i<j=1

⟨V (ri − rj)⟩ =
1

2
[C↑↓⟨ϕ↑↓ ∣ V ∣ ϕ↑↓⟩ + C↑↑⟨ϕ↑↑ ∣ V ∣ ϕ↑↑⟩], N↑ = N↓ → ∞.

High momentum limit of the momentum distribution. For the large-k limit of the
momentum distribution, we proceed once more in analogy with the bosonic case of the previous
section. We separate the momentum distribution into the two spin components. Following our
convention, namely that for labels i = 1,… ,N↑ the particles have spin-up, and the rest have spin-
down, we define

1

( )

N

∑
i<j=1

⟨V (ri − rj)⟩ =
2N↑N↓

N(N − 1)
C↑↓⟨ϕ↑↓ ∣ V ∣ ϕ↑↓⟩ +

N↑(N↑ − 1)

N(N − 1)
C↑↑⟨ϕ↑↑ ∣ V ∣ ϕ↑↑⟩

+
N↓(N↓ − 1)

N(N − 1)
C↓↓⟨ϕ↓↓ ∣ V ∣ ϕ↓↓⟩.

N

2

N

2

ρ↑(k) = N↑ ∫ dr2 … drN ∣∫ dr1e
−ik⋅r1ψ(r1,… , rN)∣

2

≡ N↑ ∫ dr2 … drN ∣ I↑(k; {rj}
N

j=2) ∣
2
,
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The development of the integrals I↑ and I↓ parallels the bosonic case. The final result reads

ρ↑(k) → C↑↓∣ ϕ̃↑↓(k) ∣
2
+ 2C↑↑∣ ϕ̃↑↑(k) ∣

2
, k → ∞,

and analogously, replacing ↑ with ↓ and viceversa, for ρ↓(k).
Static structure factor. Once more, the derivation of the large-k asymptotics of the static

structure factor S(k) parallels the bosonic case. It can be written as 
S(k) = 1 + Σ↑↓(k) + Σ↑↑(k) + Σ↓↓(k), with

Σσσ′(k) →
8πCσσ′

Nk
∫

∞

0
drr sin(kr)ρσσ′2 (r), k → ∞.

This analysis finishes the weak universal regime for two of the most interesting, and typical
systems in low-temperature physics. Next, we study the strong universal regime, and derive a
number of non-perturbative results, known as Tan’s relations, in the zero-range limit.

1.4 Strong short-range universality: Tan’s relations
In this section, we explore strong universality at short distances. To see what we mean by this, we
need to refer to section 1.2, where we discussed the relevant length scales for a few examples of
experimental relevance. The case of liquid 4 He, which we studied as the main example for weak
universality, was quite clear: the full two-body ground state is necessary to study short-range
asymptotics in a number of quantities, due to the comparable interaction range and interparticle
distance (see table 1.1). If, instead, we look up the fermionic 40K in table 1.1, we see that while the
interaction range is of the order of a few nanometers, the interparticle distance is of the order of 
105 nm. The separation of these two length scales is so large that the non-universal, interaction-
dependent part of the two-body wave function will only be of relevance in the distance range 
r ⩽ rc ≈ 0.5 Å. Oscillations, which naturally appear in the structure factor, will not be appreciable
unless momenta k ≳ r−1

c
 can be probed. In the case of liquid 4 He, this meant k ≳ 0.3 Å−1, that is,

damped oscillations should be (and are!) visible and important at all momentum scales, see figure
1.3. In the case of 40K, oscillations will play a role for k ≳ 2 Å−1. State-of-the-art experiments (see
reference [8]), probe the structure factor at momenta k satisfying kF/k > 0.1. From table 1.1, 
kF ≈ 2 × 10−7 Å−1, and therefore the probed momenta are bounded from above as 
k < 2 × 10−6 Å−1. While this is a large momentum for the system at hand, it is extremely small
when compared with the non-universal regime appearing at k > 2 Å−1. The situation in experiments
using 6 Li, is very similar, with kF ∼ 10−4 Å−1. Hence, strong universality, where the details of the
short-range part of the interaction are meaningless, will emerge.

Luckily, strong universality does not require much more technology than what was done for its
weak version. More importantly, in its strong form, short-range universality allows for a number of
universal, non-perturbative relations that are unavailable for weakly-universal systems. We consider
a system of non-relativistic spin-1/2 fermions interacting via the s-wave leading-order interaction in

ρ↓(k) = N↓ ∫ dr1 ⋯ drN−1∣∫ drNe
−ik⋅rNψ(r1,… , rN)∣

2

≡ N↓ ∫ dr1 ⋯ drN−1∣ I↓(k; {rj}
N−1
j=1 ) ∣

2
,
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effective field theory (low-energy (LO) interaction in EFT, see volume 1) in three spatial dimensions.
In Hamiltonian form, and in the position representation, we choose the Huang–Yang pseudopotential
for the interaction, that is

H = −
ℏ2

2m

N

∑
i=1

∇2
i + gR

N

∑
i<j=1

δ(rij)
∂

∂rij
(rij⋅),

where gR = 4πℏ2a/m is the renormalized LO EFT coupling constant, and a is the s-wave
scattering length. As a simple warning, the argument of the Dirac delta function in the Huang–Yang
pseudopotential, equation (1.74), must be a vector, not a scalar distance. Since the interaction has
zero range, and is s-wave, only fermions with opposite spin interact. The two-particle lowest-energy
state is a singlet, with spatial wave function

ϕ↑↓(r) = R(r)Y00(Ω),

and

R(r) =√ 2

a

e−r/a

r
, a > 0,

R(r) =
1

r
−

1

a
, a < 0.

For a > 0, the zero-energy state is also given by equation (1.77). Atomic gases, when cooled
below the degeneracy temperature, and probed during time scales much shorter than molecular
formation, remain atomic. That is, regardless of whether a > 0 (effectively repulsive) or a < 0
(effectively weakly attractive), the many-body system remains a gas, and does not feature deeply
bound molecules, which would correspond to the ground state. These, in any case, are lost from the
system when formed since the external traps do not interfere meaningfully with the molecular level
structure. Therefore, for interparticle separations RvdW ≪ r ≪ R*, we may use R(r) in equation
(1.77) as the short-range limit of the two-body wave function. We will also explore corrections due to
the tails, and see whether these are relevant or not for the problem at hand.

Without further ado, we delve into the derivation of the strong short-range universal relations for
a spin-1/2 Fermi gas. We offer a straightforward adaptation of the method used for the weak
universal systems.

1.4.1 Short-range asymptotics and Tan’s contact
Here, we do not have much to do, except for deriving the universal relations themselves, and linking
the definition of the contact for weakly-universal systems to the definition for strongly universal
systems.

We begin with equation (1.60) and, instead of the normalized two-body ground state, we use the
(infinite size) zero-energy singlet state, with the convention

ϕ↑↓(r) = ( 1

r
−

1

a
)Y00(Ω).



(1.79
)

(1.80
)

(1.81
)

(1.82
)

(1.83
)

(1.84
)

(1.85
)

This convention, in fact, corresponds to Dirac delta normalization of scattering states (see volume 1),
⟨k′∣ k⟩ = (2π)3δ(k − k′), but in the zero-energy limit, and in the s-wave channel. Since the
scattering operator is unitary, normalization does not change upon collisions. The s-wave
contribution to a three-dimensional plane wave exp(ik ⋅ r) is simply j0(kr) = sin(kr)/kr which, in
the zero-energy limit, is simply 1. Using the orthogonality relation for spherical Bessel functions,

∫
∞

0
drr2j0(k′r)j0(kr) =

π

2k2
δ(k− k′) = 2π2δ(k − k′),

the two-body zero-energy state in equation (1.78) is normalized to 2π2δ(k − k′) as k → 0. To
have a properly normalized state, with normalization ⟨ϕk′

↑↓ ∣ ϕk
↑↓⟩ = (2π)3δ(k − k′), we must

multiply equation (1.78) by √4π = 1/Y00(Ω). For parallel spins, we use their p-wave zero-energy
state, which is non-interacting, and given by

ϕσσ(r) ∝
j1(kr)

k
∝ r, k → 0.

In this case, we shall not care about normalization since the interaction is purely s-wave, and
there will not be a contact Cσσ.

We write the many-fermion wave function in the second quantization using creation (Ψ̂
†

σ(r)) and
annihilation (Ψ̂σ(r)) operators, satisfying canonical anticommutation relations,

{Ψ̂σ(r), Ψ̂
†

σ′(r′)} = δσσ′δ(r − r′).

The wave function is then given by

∣ ψ⟩ =
1

N↑!N↓!
∫ dr1 ⋯ drNψ(r1,… , rN)∏

N↑

j=1
Ψ̂

†

↑(rj)∏
N

l=N↑+1
Ψ̂

†

↓(rl) ∣ 0⟩.

The normalization of the full many-fermion wave function ⟨ψ ∣ ψ⟩ = 1 is guaranteed with the
condition

1

N↑!N↓!
∫ dr1,… rN ∣ ψ(r1,… , rN) ∣

2 = 1.

We now consider two particles (i ⩽ N↑ and j > N↑) with opposite spins in close proximity in
comparison with all other interparticle distances. The wave function is simply

ψ(r1,… , rN) → ( 1

rij
−

1

a
)A↑↓(Rij; {rk}k≠i,j), rij → 0.

We will define the contact, and call it Tan’s contact, as

C↑↓ ≡ (4π)2N↑N↓⟨A↑↓ ∣ A↑↓⟩.

Note that the only difference in convention here with respect to our analysis of the weak
universal regime is a (4π)2 factor that will prove convenient later on. With these definitions, almost
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everything proceeds as in the weakly-universal case.
Pair density function. The pair density function at short distances behaves as

ρ
(N)
2 (r) →

C↑↓

4π
( 1

r
−

1

a
)

2

, r → 0.

High momentum limit of the momentum distribution. The momentum distribution for spin-
σ fermions is given, at large k, by

ρσ(k) →
C↑↓

k4
, k → ∞,

where we have used the Fourier transform

∫ dreik⋅r
1

r
=

4π

k2
.

Static structure factor. The large momentum behaviour of Σ↑↓(k) is in this case

Σ↑↓(k) →
C↑↓

N
[ 1

8k
−

1

2πak2
].

which includes only the divergent part (as r → 0) of the two-body density.

1.4.2 Tan’s universal relations.
Recall that, in the previous subsection, we omitted, as a relation, the expectation value of the
interaction in the zero-range approximation. This is because it features an ultraviolet (UV)
divergence which, of course, cancels out with another UV divergence that occurs in the expectation
value of the kinetic energy. This is simple to see, since at large momenta ρσ(k) ∝ k−4, and therefore,
placing a UV cutoff Λ,

⟨ ℏ2k2

2m
⟩ =

2πℏ2

m
∫

Λ

0
dkk4[ρ↑(k) + ρ↓(k)] =

4πℏ2C↑↓

m
Λ +O(N).

As expected, the kinetic energy is UV-divergent. The total energy of the system is, of course,
well-defined, because the LO EFT interaction renormalizes the problem, yielding a finite energy. But
the interaction energy must be clearly divergent with a leading-order term of the form 
−4πℏ2C↑↓Λ/m. Therefore, our first goal is to derive the first of Tan’s relations, namely the energy
relation, before proceeding with the rest.

Energy relation. The expectation value of the total energy of the system ⟨H⟩ = E is given by

E =
2πℏ2

m
∫

∞

0
dkk4[ρ↑(k) + ρ↓(k) −

2C↑↓

k4
]+ ℏ2

4πma
C↑↓.

Note that the contact term in the integrand above, scaling as 1/k4, cancels out the UV
divergence in the kinetic energy and, therefore, the total energy is finite (of O(N)).



(1.92
)

(1.93
)

(1.94
)

(1.95
)

(1.96
)

(1.97
)

(1.98
)

Density–density correlation. The two-body distribution function for spin-antiparallel fermions,
is given by equation (A.5) in appendix A so, at short distances, g↑↓(r) takes the form

g↑↓(r) →
C↑↓

16π2
( 1

r2
−

2

ar
).

Adiabatic relation. Changes in the scattering length imply, of course, changes in the energy.
These are given by

dE

d(1/a)
= −

ℏ2

4πm
C↑↓.

This is known as Tan’s adiabatic relation, or adiabatic theorem.
Pressure relation. For a homogeneous system, the pressure P  and the energy density E = E/V

are related via

P =
2

3
E +

ℏ2

12πmaV
C↑↓.

Above, V  is the volume of the system.
Generalized virial theorem. If the Fermi gas is trapped by an external harmonic potential 

W ∝ r2, then the energy satisfies the following generalization of the virial theorem

E = 2⟨W⟩ −
ℏ2

8πma
C↑↓.

Proofs of Tan’s relations. We now prove all the universal relations we have just stated. We try
to use a variety of methods of proof, but note that these are provable in several other ways (see, e.g.
reference [9]).

We begin with the energy theorem. To show it, we consider the expectation value of the kinetic
energy ⟨T ⟩, using the position representation, which is reduced to

⟨T ⟩ = −
ℏ2

2m
[N↑⟨∇

2
r1

⟩ +N↓⟨∇
2
rN

⟩].

We are interested in the minimal divergent part of the kinetic energy only. We set a short-
distance cutoff r0 in the integrals involved, and we obtain

⟨∇2
r1

⟩ =
N

∑
j=N↑+1

∫ dr1 ⋯ drN ∣ A↑↓(R1j; {rl}l≠1,j) ∣
2 1

r41j
+Regular terms.

We get a completely analogous expression for ⟨∇2
rN

⟩. The short-range part of the kinetic energy
⟨T ⟩SR therefore reads

⟨T ⟩SR =
ℏ2C↑↓

4πmr0
, r0 → 0.
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We perform the same analysis for the interaction energy, which can be obtained in closed form, and
add the short-distance cutoff in the delta interaction as δ(r1j − r0). We obtain the full interaction
energy as

⟨V ⟩ = −
ℏ2C↑↓

4πmr0
+

ℏ2C↑↓

4πma
.

Therefore, the energy has the form

E = ∫ dk
ℏ2k2

2m
[ρ↑(k) + ρ↓(k) −

2C↑↓

k4
]+

ℏ2C↑↓

4πma
,

which proves the result.
To prove the adiabatic theorem, we will use the Hellmann–Feynman theorem, which states, for a

regular Hamiltonian that does not contain distributional interactions,

dE

da

?
= ⟨ ∂V

∂a
⟩.

For the LO EFT interaction, it is easy to calculate, with a short-distance cutoff r0, the
expression on the right-hand-side of equation (1.101), and we obtain

⟨ ∂V

∂a
⟩ = −

ℏ2C↑↓

4πmar0
+

ℏ2C↑↓

4πma2
,

which is clearly divergent and, therefore, not correct. It appears obvious that the divergent term
should disappear, as it should, since it is divergent. But let us do this rigorously. Firstly, we should
wonder why the Hellmann–Feynmann theorem does not work. The reason is very simple: the
Hamiltonian is not self-adjoint! It is not true that if H(a) ∣ ψa⟩ = E(a) ∣ ψa⟩ then 
⟨ψa ∣ H(a) = ⟨ψa ∣ E(a), where we have explicitly included the dependence on the scattering length
a. To make the divergent term disappear, we should verify that, instead

⟨ψa ∣ H(a)∂aψa⟩ = E(a)⟨ψa ∣ ∂aψa⟩ +
ℏ2C↑↓

4πmar0
.

It is a lengthy but straightforward calculation to show that

⟨ψa ∣ V ∂aψa⟩ = −⟨ ∂V

∂a
⟩+

4πℏ2

m
( 1

r0
−

1

a
)N↑N↓⟨A↑↓ ∣ ∂aA↑↓⟩.

Then, using that ∂a⟨ψa ∣ ψa⟩ = 0, together with ⟨ψa ∣ H(a)† = E(a)⟨ψa ∣, we find

∂E

∂a
= −⟨ψa ∣ V †∂aψa⟩ −

4πℏ2

m
( 1

r0
−

1

a
)N↑N↓⟨A↑↓ ∣ ∂aA↑↓⟩.

All that is left is the calculation of ⟨ψa ∣ V †∂aψa⟩ = ⟨V ψa ∣ ∂aψa⟩. Another lengthy
calculation gives
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⟨ψa ∣ V †∂aψa⟩ = −
ℏ2C↑↓

4πma2
−

4πℏ2

m
( 1

r0
−

1

a
)N↑N↓⟨A↑↓ ∣ ∂aA↑↓⟩,

and, therefore

∂E

∂a
=

ℏ2C↑↓

4πma2
,

which finishes the proof of the adiabatic theorem.
As a side note, we can state a variation of the Hellmann–Feynman theorem for EFT, or singular,

interactions, which feature non-self-adjointness in intermediate steps. We obtain, in this case, if 
H = H(λ) = T + V (λ),

∂E

∂λ
= ⟨ ∂V

∂λ
⟩+ ⟨ψλ ∣ V ∂λψλ⟩ − ⟨V ψλ ∣ ∂λψλ⟩.

Obviously, the above generalization to EFT interactions coincides with the standard Hellmann–
Feynman theorem for regular interactions. We leave the proof of the above to the interested reader
(see problem 3).

Let us prove now the pressure relation. To do that, we fix N↑ and N↓, and calculate dE/dV . We
prove this relation for a balanced Fermi gas, with N↓ = N↑, and leave the general proof to the
problem section. From dimensional analysis, the energy is given by

E =
ℏ2

ma2
NF(kFa),

where F  is a generic continuous, differentiable function (except, perhaps, at a = 0), and kF  is
the Fermi momentum. The volume V  and kF  are related via V = 3Nk−3

F
/4π, and we therefore

obtain

dE

dV
= −

4π

9

ℏ2k4
F

ma
F ′(kFa).

Differentiating the energy with respect to the scattering length, we readily obtain

dE

da
= −

2

a
E −

9N

4πk3
Fa

dE

dV
.

From the above relation, after defining the energy density E = E/V , we obtain

dE

dV
= −

2

3
E −

1

3V
a
dE

da
.

Using the adiabatic theorem, the pressure relation follows.
We add now an external harmonic potential W ∝ r2 to the Hamiltonian, and show the

generalized virial theorem. The two length scales are now the scattering length and the oscillator
length ℓ = (ℏ/mω)1/2, where ω is the oscillator’s frequency. The energy of the system must depend
on these as
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E =
ℏ2

mℓa
F(ℓ/a) =

ℏ2

ma2
G(ℓ/a) =

ℏ2

mℓ2
H(ℓ/a),

where F , G and H are generic, differentiable functions. It is trivial to verify that all three forms
in equation (1.113) are equivalent to one another. We choose the second expression for convenience,
and use the Hellmann–Feynman theorem to observe that

∂E

∂ℓ
= −

4

ℓ
⟨W⟩.

Identifying

dE

d(1/a)
= 2aE +

ℏ2ℓ

ma2
G′(ℓ/a),

we find that

⟨W⟩ =
E

2
−

1

4a

dE

d(1/a)
.

Using now the adiabatic theorem, we immediately arrive at the generalized virial theorem.

1.5 Tan’s relations in one spatial dimension
All the universal relations can be adapted to arbitrary dimensions. Since we will devote the entire
next chapter to one-dimensional systems with zero-range (to LO or beyond LO EFT) interactions, it
is important to derive these relations—although more briefly—in one dimension. For LO EFT
interactions, the many-boson problem is called Lieb–Liniger model, the spinless fermionic
equivalent (with odd-wave LO EFT interactions) is called Cheon–Shigehara model, while the spin-
1/2 fermionic version is called Yang–Yang model. These are all exactly solvable and integrable,
which make them perfect playgrounds to test Tan’s relations in a controlled way.

1.5.1 Lieb–Liniger model
The Lieb–Liniger model consists of N  non-relativistic bosons in one dimension interacting via a
Dirac delta pairwise potential. That is, their Hamiltonian is given by

H =
N

∑
i=1

p2i
2m

+ g

N

∑
i<j=1

δ(xi − xj).

As we saw in volume 1, the one-dimensional delta potential is regular, and needs no
regularization. Given the coupling constant g, the one-dimensional scattering length a1 is given by

g = −
2ℏ2

ma1
.

The short-distance, zero-energy, relative wave function for two particles is given by

ϕ2(xij) = 1− ∣ xij ∣ /a1.
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At short distances, the many-body wave function ψ separates, as usual, as

ψ(x1,… ,xN) → (1− ∣ xij ∣ /a1)A
(N)
2 (Xij; {xl}l≠i,j), xij → 0.

where Xij = (xi + xj)/2 is the centre of mass coordinate for the pair i, j. We will define the
contact as

C = N(N − 1)⟨A(N)
2 ∣ A(N)

2 ⟩,

so that, in this case, it is easy to see that it coincides with the integral over the local two-body
distribution function,

C = ∫ dxg2(x,x).

Since the Dirac delta interaction in one dimension is regular, the usual Hellmann–Feynman
theorem works, and we have

dE

d(−1/a1)
=

2ℏ2

m
∑
i<j

⟨δ(xi − xj)⟩ =
ℏ2

m
∫ dxg2(x,x) =

ℏ2C

m
.

The energy relation in this case is quite trivial, since ⟨V ⟩ = 0 for a1 → ∞ (the system becomes
non-interacting), and therefore, for finite scattering length, we get, from the adiabatic theorem, 
⟨V ⟩ = −ℏ2C/ma, and the energy is given by

E = ∫ dk

2π

ℏ2k2

2m
ρ(k) −

ℏ2C

ma
.

The tail of the momentum distribution is obtained as usual. All that we need is the distributional
Fourier transform of ∣ xij ∣ which, at large k, behaves as −2/k2. Therefore, the large momentum
asymptotics of the momentum distribution is

ρ(k) →
4C

a2k4
, k → ∞.

The structure factor is evaluated, for large momenta, just as in the three-dimensional case, and
we have

S(k) → 1 +
4C

Nak2
, k → ∞.

For the pressure in a homogeneous system, we recognize the two length scales of the problem
as 1/ρ, with ρ the one-dimensional density, and a1. The energy can be written, from dimensional
analysis, as

E =
ℏ2

ma2
1

F(ρa1).
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We evaluate dE/dL, where L is the length of the system, and use the adiabatic theorem to obtain

ℏ2C

m
= −2a1E − a1L

dE

dL
,

and we obtain, for the pressure P ,

P = 2E +
ℏ2C

mLa1
,

where E = E/L is the one-dimensional energy density. We leave the one-dimensional bosonic
virial theorem to the problem section.

1.5.2 Cheon–Shigehara model
The spinless, or spin-polarized fermionic many-body problem with LO odd-wave EFT interactions is
more subtle than the Lieb–Liniger model. To begin with, the two-body interaction requires
regularization and renormalization (see volume 1). Moreover, for N > 3 fermions, the two-body
interaction yields further divergences and, therefore, the problem must be once more renormalized.
One may resolve this issue in a number of ways: (i) The discrete, nearest-neighbour-coupled version
of the model does not require three-body renormalization, has the correct continuum limit, is dual to
the Lieb–Liniger model in the continuum, and is exactly solvable via the Bethe ansatz (it is the
fermionic version of the Heisenberg model); (ii) we can add a particular three-body interaction or a
counterterm in the continuum model and leave the problem exactly solvable; (iii) we can use an
associative algebra of generalized functions in order to define products of distributions and in this
way define the Cheon–Shigehara model directly as the fermionic dual to the Lieb–Liniger model.
This last option will be thoroughly explored in the following section, so we postpone its discussion.

The odd-wave LO interaction can be represented as a boundary condition whenever two fermions
approach each other. Let us do this first in the relative coordinate. The wave function must satisfy

ψ(0+) − ψ(0−) = −2a1ψ′(0).

The relation above is subtle. The derivative, ψ′(x), which should appear smooth, is in fact a
distribution. Therefore, what is meant rigorously by ψ′(0) is

ψ′(0) ≡ lim
x→0+

ψ′(x) = lim
x→0−

ψ′(x),

where the derivative must be taken strictly out of the zero limit. We can save ourselves some of
this trouble by accepting the distributional nature of the derivative and replacing condition (1.130)
with the following integral condition

∫
ε

−ε

dxψ′(x) = [ψ(0+) − ψ(0−)](1 −
ε

a1
),

where ε → 0. As such, it is still not so rigorous, so we fix it by differentiating and taking the
limit, as

lim
ε→0+

d

dε
∫

ε

−ε

dxψ′(x) = −
1

a1
[ψ(0+) − ψ(0−)].
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Equation (1.133) above is the correct zero-range boundary condition, which implies that the zero-
energy wave function is given by

ψ(x) ∝ sgn(x) −
x

a1
.

Let us calculate the finite-energy scattering states, and the bound state (for a1 > 0), using the
boundary condition (1.133). Since we are dealing with fermions with a zero-range interaction, the
scattering states have the form (see volume 1)

ψk(x) = sgn(x) sin(k ∣ x ∣ +θk).

We obtain

lim
ε→0+

d

dε
∫

ε

−ε

dxψ′(x) = 2k cos θk,

and applying the boundary condition (1.133), we finally get

−k cot θk =
1

a1
.

Note that, not coincidentally, the phase shifts in the Cheon–Shigehara model are identical to the
phase shifts in the Lieb–Liniger model. This is the basic building block for the Bose–Fermi duality
between the two many-body problems.

We are now in position to set the zero-range boundary conditions for the many-fermion wave
functions. For each pair of fermions (i, j), we try to generalize condition (1.133) to

The relation in equation (1.138) defines the model without the need to refer to a specific
interaction. However, and this is important, condition (1.138) for the pair (i, j) is to be understood
for ∣ xl − xj ∣> 0 (l ≠ i, j), strictly. Otherwise, three-body effects come into play. We can see this
with the simplest three-body example with a1 → ∞. In that case, the zero-energy state (in the
infinite size limit) is given by

ψ(x1,x2,x3) = sgn(x1 − x2) sgn(x1 − x3) sgn(x2 − x3).

The integrand in equation (1.138) takes the form, for pair (1, 2)

∂ψ

∂x1
−

∂ψ

∂x2
= 4δ(x12) − 2[δ(x13) + δ(x23)].

Upon integration over x1, for a fixed ε > 0, the integral in equation (1.138) is independent of ε
if x3 ∉ [x2 − ε,x2 + ε]. Therefore, ∣ x3 − x2 ∣> 0 strictly so that there exists η > 0 such that 

lim
ε→0+

d

dε
∫

xj+ε

xj−ε

dxi[
∂

∂xi
ψ(x1,… ,xN) −

∂

∂xj
ψ(x1,… ,xN)]

?
=

−
1

a1
[ lim
xi→x+

j

ψ(x1,… ,xN) − lim
xi→x−

j

ψ(x1,… ,xN)].
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∣ x3 − x2 ∣> η and, taking ε < η and then the derivative, condition (1.138) is satisfied for this pair.
However, if we enforce this, the condition cannot be satisfied for pair (2, 3) unless we include a
further condition on three-body coalescence! Hence, we must abandon condition (1.138) in its pure
form.

Let us then try something else, again. Take the wave function in equation (1.140), and apply the
non-interacting part of the Hamiltonian on it. We have

Well, well, a three-body term has shown up. The (singular) interaction potential must therefore
contain a three-body counterterm. The generalization to N  particles is now trivial, for the eigenstate
with

ψ(x1,… ,xN) =
N

∏
i<j=1

sgn(xi − xj).

The interaction has the formal expression

V =
2ℏ2

m

N

∑
i<j=1

δ′(xi − xj) sgn(xi − xj) +
4ℏ2

m

N

∑
i<j<k=1

δ(xi − xj)δ(xj − xk).

Note how strange the above equation looks: it contains undefined products of distributions, in
particular Dirac deltas times signum functions. Moreover, it contains a three-body interaction that is
purely contact. These interactions are so singular, that they are essentially unusable unless we work
out a way to define them properly, as we will do in the next chapter. However, they do tell us that
three-body interactions are not negligible in the continuum model, and we should deal with them
carefully.

Our next attempt, which will prove free of subtleties, is discretization and subsequent pass to the
continuum limit. Let us begin with two particles, with discrete Laplacian including only nearest
neighbours, and lattice spacing d. Each coordinate can take on values xi ∈ Zd. The kinetic energy
reads (see volume 1)

Let us work out the interaction, assuming it is local, if the eigenfunction is

ψ(x1,x2) = sgn(x1 − x2),

with sgn(0) ≡ 0. Since the space is discrete, defining the sign at zero as zero is meaningful, and
includes no issues. For ∣ x1 − x2 ∣> d, equation (1.144) vanishes for this state. For x1 = x2 ± d, we
have (H0ψ)(x1,x2) = 2Jψ(x1,x2). Therefore, the interaction potential must be

V = −2J(δx1+d,x2
+ δx1,x2+d),

∂x1ψ = 2[δ(x1 − x2) sgn(x1 − x3) sgn(x2 − x3) + sgn(x1 − x2)δ(x1 − x3) sgn(x2 − x3)],

∂ 2
x1
ψ = 2[δ′(x1 − x2) sgn(x1 − x3) sgn(x2 − x3) + sgn(x1 − x2)δ′(x1 − x3) sgn(x2 − x3)]

+ 8δ(x1 − x2)δ(x1 − x3) sgn(x2 − x3).

(H0ψ)(x1,x2) = − J[ψ(x1 + d,x2) + ψ(x1 − d,x2) + ψ(x1,x2 + d) + ψ(x1,x2 − d)]

+ 4Jψ(x1,x2).
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where δx,y is a Kronecker delta. Equation (1.146) is just a local, two-body, nearest-neighbour
interaction. The zero-energy solution is in fact the ground state, corresponding to infinite a1.
The non-relativistic continuum limit is obtained by setting J = ℏ2/2md2 and letting d → 0. Doing

the same for three particles, with wave function ψ =
3

∏
i<j=1

sgn(xi − xj), we see that no three-body

interactions need to be included, and the state remains a good eigenstate, with a well-defined
continuum limit. We shall not solve the whole model exactly here—we will do so in the following
section—but proceed to extract the short-distance universality of the continuum model from the
continuum limit of its discrete version.

Firstly, we will allow a finite scattering length a1 for zero pair total momentum by changing the
interaction strength in equation (1.146) from V0 = −2J  to (see volume 1)

V0 = −
2J

1 − d/a1
= −

ℏ2

md2

1

1 − d/a1
.

Then, we write the zero-energy two-body state in the relative coordinate as

ϕ2(xij) = sgn(xij)[1− ∣ xij ∣ /a1].

For xij → cd, with d → 0 and c any finite integer, the many-fermion wave function factorizes
as usual

ψ(x1,… ,xN) → ϕ2(xij)A
(N)
2 (Xij; {xl}l≠i,j).

The first thing we can do is try and derive the adiabatic theorem. Since the Hamiltonian on the
lattice is indeed Hermitian, the Hellmann–Feynman theorem will work in its usual version. Hence,
we have

Above, we have defined the contact C via

C ≡ lim
d→0

[d∑
x

g2(x,x+ d)] = lim
d→0

[d∑
x

g2(x,x− d)],

which is the discretized version of the continuum contact, equation (1.122). Note that the
adiabatic theorem in equation (1.150) is identical to the adiabatic theorem for the Lieb–Liniger
model, equation (1.123), which once more points at duality between the two models. The other two
relations that are identical to the Lieb–Liniger model are the pressure relation, equation (1.129), and
the high-momentum asymptotics of the structure factor, equation (1.126). This is due to the identical

∂E

∂(−1/a1)
= ⟨ ∂V

∂(−1/a1)
⟩ =

2Jd

(1 − d/a1)
2
∑
i<j

⟨δxi,xj+d + δxi,xj−d⟩

= N(N − 1)
2Jd

(1 − d/a1)
2

⟨ψ ∣ δxi,xj+d ∣ ψ⟩

⟨ψ ∣ ψ⟩

→
ℏ2C

m
, d → 0,
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2)
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3)
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4)

short-distance behaviour of ∣ ϕ2 ∣2 in both models. We encourage the reader to prove these facts in
the problem section.

However, the momentum distribution for fermions is quite different. This fact is trivial in the
sense that the Lieb–Liniger model’s momentum distribution for a1 = 0− has a tail ρ(k) ∝ C/a2

1k
4,

with the contact C ∝ a2, while free fermions (corresponding to a1 = 0−) have a Fermi sea as its
momentum distribution. It is very simple to see that, for fermions, the momentum distribution has the
following asymptotic behaviour

ρ(k) →
4C

k2
, k → ∞.

This is not at odds with the Fermi sea for a1 → 0−, since in perturbation theory C ∝ a2
1
, and

the tail disappears at exactly a1 = 0−.
We must now be careful with the energy theorem. Because of the adiabatic theorem for the

Cheon–Shigehara model in the continuum limit, equation (1.150), and because the Hamiltonian on
the lattice is Hermitian, we have

E = lim
d→0

∫
π/d

−π/d

dk

2π
ρ(k)[−2J(cos(kd) − 1)] −

ℏ2C

ma1
.

Unfortunately, we cannot exchange the limit and integral signs above! Since the energy theorem
is regularization-dependent, results vary depending on the scheme. For instance, Sekino and Nishida
[10] showed that in the continuum model,

E = ∫ dk

2π

ℏ2k2

2m
[ρ(k) − 4C

k2
]+ ℏ2C

ma1
+

2ℏ2C3

m
,

where C3 = ∫ dxg3(x,x,x) is the three-body contact. Since the discretized Cheon–Shigehara
model is exactly solvable, these two equivalent relations for the total energy provide another method
to calculate the three-body contact—or the short-range three-body correlations—provided we can
estimate the momentum distribution.

1.5.3 Yang–Yang model
The last relevant system is simply the spin-1/2 fermionic version the Lieb–Liniger model, with first-
quantized Hamiltonian given by equation (1.117). In this case, a pair of fermions in a triplet state do
not interact, and therefore we can reduce the interaction to between spin-up and spin-down particles.
We shall adopt the same conventions as in the three-dimensional case, where particles i = 1,… ,N↑

have spin-up, and particles i = N↑,… ,N  have spin-down. The technology needed here is identical
to that used for the Lieb–Liniger model, and the whole list of relations can be found in reference
[11].

Problems
1. Consider a two-body interaction potential for identical particles in three dimensions that

behaves, asymptotically (r → ∞), as
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5)

V∞(r) =
ℏ2

m
[ g6
r6

+
g8

r8
].

Show that the zero-energy s-wave state in the relative radial coordinate behaves as

a(r) = a+
a1

r3
+

a2

r4
+

a3

r5
+O(r−6),

and calculate ai (i = 1, 2, 3) as functions of g6, g8 and the scattering length a.
2. Calculate the leading-order asymptotic correction to the finite-energy s-wave phase shifts in

three dimensions for oscillating interactions with power-law tails, of the form

V∞(r) =
ℏ2gν

rν
cos(qr).

Which is the smallest power ν that allows for short-range scattering in this case?
3. Given the following non-self-adjoint Hamiltonian

H(λ) = H0 + V (λ),

where λ is a parameter:
a. Show the generalized Hellmann–Feynman theorem for any eigenvalue E(λ) associated

with its corresponding right eigenstate ψλ,

∂E(λ)

∂λ
= ⟨ ∂V (λ)

∂λ
⟩+ ⟨ψλ ∣ V (λ)∂λψλ⟩ − ⟨V (λ)ψλ ∣ ∂λψλ⟩.

b. Prove the standard Hellmann–Feynman theorem for a self-adjoint Hamiltonian as a
corollary.

4. Consider a three-dimensional spin-1/2 Fermi gas with LO EFT s-wave interactions. Obtain the
corresponding pressure relation for an imbalanced system with N↑ ≠ N↓ in the thermodynamic
limit, that is, with

lim
N ,N↑→∞

N↑

N −N↑
= c ∈ Q.

(Hint: the Fermi momenta for each spin component are different, kF↑ ≠ kF↓, which introduces
another parameter, namely α ≡ kF↑/kF↓.)

5. Derive the generalized virial theorem for the one-dimensional Lieb–Liniger model.
6. Show that Lieb–Liniger bosons and Cheon–Shigehara fermions share the following universal

relations:
a. Pressure relation.
b. Pair correlation function at short distances.
c. Static structure factor at large momenta.

7. Obtain all of Tan’s relations for the Yang–Yang model, and find the qualitative similarities and
quantitative differences between these and those for the Lieb–Liniger model, if 
N↑ = N↓ = N/2.
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Chapter 2

Bose–Fermi mapping and strongly interacting one-dimensional
systems

Many realistic many-body systems, ranging from electrons in solids to trapped ultracold atoms, can be
described as being essentially one-dimensional. This is particularly clean with ultracold atomic ensembles, for
which highly anisotropic optical lattices split the system, physically, into a collection of tight tubes. There, the
atoms behave almost as if they were one-dimensional. In volume 1, we saw how scattering properties are
modified as transversal confinement is varied, and how purely one-dimensional systems collide. Here, we
consider one-dimensional, many-body systems of bosons or fermions focusing, in particular, on what is
known as Bose–Fermi duality. That is, the equivalence between certain systems of bosons and fermions in one
spatial dimension. We also consider trapped, multicomponent, strongly interacting systems, which can be
mapped onto spin chains, with this problem being highly related to the short-distance universality described in
chapter 1, as well as a self-contained introduction to Luttinger liquid theory.

2.1 Bose–Fermi duality for hard core interactions
In 1960, M D Girardeau published an extremely influential paper entitled Relationship between Systems of
Impenetrable Bosons and Fermions in One Dimension [1]. In essence, he proved that many-body, non-
relativistic systems of spinless bosons and spin-polarized fermions in one dimension, with identical
Hamiltonians, are in one-to-one correspondence (under some extra assumptions that we will work out in
brief), whenever the Hamiltonian features two-body interactions that have a short-distance hard core. That is,
whenever the two-body interaction satisfies lim

x→0
V (x) = ∞. This does not preclude the inclusion of three- or

higher-body interactions. This Bose–Fermi duality may appear innocuous at first. However, the methods we
know to treat bosons and fermions are very different and work in very different regimes. Hence, Girardeau’s
insights allow, in many instances, switching from a bosonic to a fermionic representation and compute many
quantities of interest using weak-coupling theory, even if the original theory may be strongly coupled, and
vice versa.

Let us work out, as usual, the two-body problem, imposing only the short-distance hard core condition.
Assume a two-body fermionic eigenstate of the Hamiltonian H with eigenenergy E, in vacuum, is given by 
ψF (x1,x2). Obviously, if the interaction has a singularity at the origin but is otherwise smooth (no delta
functions or other sneaky distributions) and is local, the wave function satisfies ψF (x,x) = 0. Recall, from
chapter 1, that the main issue with signum distributions is their behaviour at x = 0. However, these pose no
problem when applied on functions that vanish there. Hence, the following function is perfectly well defined
(and vanishes) for x1 = x2,

ψB(x1,x2) = sgn(x1 − x2)ψF (x1,x2).

If there are no other singularities in the potential except at x1 = x2, and the potential is continuous and
differentiable otherwise (for instance, a power-law at short distances, V (x) ∼ 1/x2ν , with ν an integer, as 
x → 0), then ψF  is continuous and twice differentiable at x = 0. Then, the wave function in equation (2.1) is
a bosonic solution to the same Schrödinger equation as ψF , with the same eigenenergy.
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(2.7)

(2.8)

The statements in the previous paragraph remain true with more singular hard core potentials. For
example, take a two-body hard-rod interaction with diameter a > 0, that is,

V (x) = V0θ(a− ∣ x ∣), V0 → +∞,

with θ(x) the Heaviside step function (not to be confused with the scattering phase shifts). This potential is
equivalent to the boundary condition ψ(x1,x2) = 0 if ∣ x1 − x2 ∣⩽ a for the solutions to the Schrödinger
equation. Continuity of the scattering states immediately imply

ψB(x1,x2) = sin(k ∣ x ∣ −ka)θ(∣ x ∣ −a),

ψF (x1,x2) = sgn(x) sin(k ∣ x ∣ −a)θ(∣ x ∣ −a).

That is, the Bose–Fermi mapping is still valid. And it remains valid even if the interaction potential had a
hard-rod condition plus another smooth interaction potential. An important example, the point hard core limit
(a → 0), is particularly relevant, turning ψF  into a free fermionic state, and ψB into its bosonic dual. Here, the
interaction potential can be modelled as

V (x) = gδ(x), g → ∞,

and its associated many-body problem is typically called the Tonks–Girardeau limit of the Lieb–Liniger model
(although, in all fairness, Girardeau is to be given full credit for this!).

Let us now study the many-body problem. To show the Bose–Fermi duality, we follow Girardeau’s
original proof [1]. We consider a system of N  spinless fermions with a hard core condition (a ⩾ 0)

ψF (x1,x2,… ,xN) = 0, ∣ xi − xj ∣⩽ a (i ≠ j = 1,… ,N),

and satisfying the Schrödinger equation

−
ℏ2

2m

N

∑
i=1

∂ 2ψF

∂x2
i

+ V (x1,… ,xN)ψF = EψF ,

where V  is a regular, local, but otherwise general interaction. The fermionic eigenstate ψF  is then a
continuous function vanishing for ∣ xi − xj ∣⩽ a. Now define a bosonic wave function ψB as

ψB(x1,x2,… ,xN) = ψF (x1,x2,… ,xN)
N

∏
i<j=1

sgn(xi − xj).

Since ψF  is continuous everywhere, so is ψB. Moreover, the Schrödinger equation (2.7) is clearly satisfied by
the bosonic wave function ψB in every order sector (defined by permutations of x1 < x2 … < xN ), where the
product of signum functions does not change sign. Moreover, if N  is odd, and ψF  satisfies periodic boundary
conditions, so does ψB. Also, in the space of functions that vanish whenever xi = xj (i ≠ j = 1,… ,N), the
square of the product of signum distributions is unity. Therefore, the spectra of the bosonic and fermionic
problems are identical, and the transformation is norm-preserving: the dynamics of bosons and fermions are in
one-to-one correspondence, and therefore duality holds.

We now solve the Tonks–Girardeau gas, for which equation (2.7) has V ≡ 0, and the eigenstates satisfy
the boundary condition (2.6) with a = 0. We take periodic boundary conditions, and an odd particle number 
N . Since, without any need for further boundary conditions ψF  satisfies equation (2.6), ψF  is simply a free
fermion N-body state, given by a Slater determinant. According to the Bose–Fermi mapping, equation (2.8),
the bosonic state ψB is a Slater determinant times Girardeau’s totally antisymmetric function. In every order
sector, with non-overlapping positions, ψB obeys the (non-interacting) Schrödinger equation. Because this
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)
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)
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)

problem is equivalent to a delta-interacting Bose gas with interaction strength g → ∞, we are certainly
running into trouble if we try to solve the problem directly for g → ∞ using distributional derivatives. To
remedy this, we can choose a number of regularization schemes: (i) use the contact boundary conditions for 
1/g = 0; (ii) place the system on a lattice with a hard core condition ψ(x1,x2,… ,x,… ,x,… ,xN ) = 0 and
take the continuum limit (equivalent to taking V0 = 0 in equation (1.147)); (iii) place the system on a lattice
with interaction strength in equation (1.147), a1 = −αd, with α > 0, and then take the continuum limit; (iv)
consider a system of hard rods with a > 0 and carefully take the limit a → 0. Method (iii) is doable (the
system is integrable) but overkill. Method (i) is the most straightforward, since the boundary conditions are ψ
is continuous, and ψ = 0 if xi = xj for any pair i ≠ j. Therefore, ψ = ψF ∏

i<j

sgn(xi − xj), where ψF  is a

Slater determinant of plane waves. Method (ii) is equally simple, since it is straightforward to check that 
ψ = ψF ∏

i<j

sgn(xi − xj), where sgn(0) = 0 on the lattice is an eigenstate, and the continuum limit gives

exactly the same as with method (i), except on a set of zero (Lebesgue) measures. Method (iv), given a
fermionic eigenstate ψF , was already proven, and is also straightforward. In this case, it is actually the limit
that may be interesting, so we follow this.

To do this, take the following fermionic eigenstate

ψF (x1,… ,xN) ≡
N

∏
i<j=1

θ(∣ xij ∣ −a)ϕF (x1,… ,xN).

Above, ϕF  is an extension of ψF  to the inside of the hard cores, which we take to be continuous, twice
differentiable everywhere except perhaps when xi = xj, where it is allowed to be even discontinuous.
Applying the kinetic energy operator on ψF , and working out the resulting expression, we see that if ϕF  has
these properties and vanishes when xi = xj for all i ≠ j, the state (2.9) is an eigenstate of the problem. We
then take the limit a → 0, which leaves as the only possibility the free fermionic eigenstates.

2.2 Bethe Ansatz solution of the Lieb–Liniger model
Before proceeding with further duality relations, we should take a moment to solve the one-dimensional
many-boson problem with Dirac delta interactions exactly, using the Bethe ansatz. This is not required for the
duality relations, but it proves very convenient, for obvious reasons. We shall follow, for the most part, the
original calculation of Lieb and Liniger [2].

Take N  bosons in a ring (periodic boundary conditions) with length L, and Hamiltonian

H = −
ℏ2

2m

N

∑
i=1

∂ 2

∂x2
i

+ g
N

∑
i<j=1

δ(xi − xj).

We first consider repulsive interactions with g > 0. The Dirac delta interaction is equivalent to the
following set of boundary conditions on the eigenfunctions of the Hamiltonian ψ,

( ∂

∂xi
−

∂

∂xj
)ψ∣xi=xj+0+ − ( ∂

∂xi
−

∂

∂xj
)ψ∣xi=xj−0+ =

2mg

ℏ2
ψ∣xi=xj

.

As is quite usual with Bethe solvable models, we consider a particular ordering sector, namely

Γ1 = {(x1,… ,xN) : 0 ⩽ x1 ⩽ x2 ⩽ … ⩽ xN ⩽ L}.

Since we have spinless bosons, we only need to know the eigenstates in Γ1, and we can obtain it in any
other ordering sector by (bosonic) symmetry. In the (topological) interior of Γ1, Γo

1
, the eigenstates satisfy the
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)
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free Schrödinger equation, that is

−
ℏ2

2m

N

∑
i=1

∂ 2ψ

∂x2
i

= Eψ, (x1,… ,xN) ∈ Γo
1,

and they satisfy the boundary condition

( ∂

∂xi+1
−

∂

∂xi
)ψ∣xi+1=xi

=
mg

ℏ2
ψ∣xi+1=xi

, (x1,… ,xN) ∈ Γ1.

To impose the periodic boundary conditions on the ring, we must take the coordinates outside of the
region Γ1. For any ordering (x1,… ,xN), the wave function must satisfy

ψ(x1,… ,xi + L,… ,xN) = ψ(x1,… ,xi,… ,xN),

and have continuous derivative. If (0,… ,xN) ∈ Γ1, then (L,… ,xN) ∉ Γ1. However, due to bosonic
symmetry, (x2,… ,xN ,L), which is in Γ1 is equivalent to (0,… ,xi,… ,xN) and, therefore, the periodic
boundary conditions in Γ1 read

ψ(0,x2,… ,xN) = ψ(x2,… ,xN ,L),

∂xψ(x,x2,… ,xN) ∣x=0= ∂xψ(x2,… ,xN ,x) ∣x=L.

In the ordering sector Γ1, we consider the so-called Bethe ansatz. We choose a set of N  quantities, 
{ki}

N
i=1

 with dimensions of inverse length (momentum), that we shall call rapidities or asymptotic momenta,
all different from each other. The Bethe ansatz wave function in Γ1 has the form

ψ(x1,… ,xN) = ∑
P

a(P) exp(i
N

∑
j=1

kPj
xj).

The sum above runs over all possible permutations of rapidities, while the coordinates remain in Γ1. The
coefficients of the expansion, a(P), are the main quantities that we need to calculate, given {ki}Ni=1

 and, as we
shall see, they are related very simply to the scattering phase shifts of the theory. If equation (2.18) proves to
be an eigenstate (when extended to the whole space of coordinates), then obviously the eigenenergy must be
given by

E =
ℏ2

2m

N

∑
i=1

k2
i .

Since total momentum K is conserved, then it must also hold that K =
N

∑
i=1

ki is the total momentum of

the system. Now, we figure out the relation between a(P) and a(P ′) for different permutations. Let us
consider the identity, P1 = I, which leaves the ordered set {ki}Ni=1

 as is, and a permutation P2 that exchanges
the order of k2 and k1. If the Bethe ansatz is indeed a solution, then it must satisfy, according to equation
(2.14),

i(k2 − k1)[a(P1) − a(P2)] =
mg

ℏ2
[a(P1) + a(P2)],

which implies
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)
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a(P1)

a(P2)
= −

mg/ℏ2 + i(k2 − k1)

mg/ℏ2 − i(k2 − k1)
.

Since the above expression has unit modulus, we can write

a(P1)/a(P2) ≡ −exp(−iθ̃(k2 − k1)),

and obtain

tan(
θ̃(s)

2
) = −

ℏ2s

mg
.

The tilded notation for the ‘phase shift’ θ̃(s) is purposeful, since the two-body, even-wave phase shift in
the Lieb–Liniger model, θ(k) ≡ θ(k2 − k1)/2 is given by tan θ(k) = 2ℏ2k/mg. Hence, we identify

θ(k) =
θ̃(k2 − k1)

2
=

θ̃(2k)

2
.

We may arrive at all different permutations by transposing pairs of rapidities in succession. The result is
that for each transposition, the new coefficient a(P) gets an extra factor −exp(−iθ̃ jk), where j and k are the
transposed rapidity indices. Applying the periodic boundary conditions, equation (2.16), we extract the
particular allowed values of the rapidities via

−(−1)Ne−ikjL =
N

∏
l=1

e−iθ̃(kj−kl).

Let us analyze the (exponential form of) the Bethe ansatz equations, equation (2.25), in the particularly
simple (by now!) Girardeau’s limit, 1/g = 0. In this limit, all the phase shifts vanish, and since ki ≠ kj for 
i ≠ j (otherwise the wave function would vanish!), we have, for odd N ,

kj =
2πnj

L
, nj ∈ Z,

The ground state corresponds, obviously, to the following sequence of rapidities

{Lkj/2π}
N

j=1 = {−(N − 1)/2,−(N − 3)/2,… ,−1, 0, 1,… , (N − 3)/2, (N − 1)/2}.

That is, the rapidities are simply evenly distributed from −kF  to +kF , as should be expected from Bose–
Fermi duality. Keeping now an odd number of particles, and transforming the Bethe ansatz equations to a
more convenient form, we have their standard form, namely

where, on the second line, we have identified θ̃  with the phase shifts of the model and where 
kjl = (kj − kl)/2 are the (actual) relative momenta. To work out the ground state in the thermodynamic limit,
we first assume—which is actually true—that the ground state corresponds to equally spaced Bethe numbers
(the set of nj’s), between −kF  and kF , as happens for hard core Girardeau’s bosons. Then, we use some basic

kj =
2πnj

L
+

1

L

N

∑
1=l(≠i)

θ̃(kj − kl)

=
2πnj

L
+

2

L
∑

1=l(≠i)

θ(kjl),
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)
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probability theory. We know the probability density, as L → ∞ with N/L = ρ = kF/π fixed, for the set of
momenta k(0)

j ≡ 2πnj/L, which is given by

Π(k(0)) =
Θ(kF− ∣ k(0) ∣)

2kF
,

where Θ(⋅) is the Heaviside step function. Since the rapidities, or Bethe asymptotic momenta, kj, are
functions of k(0)

j
, in the thermodynamic limit we have k = k(k(0)). The probability density for the rapidities is

then given by

Π̃(k) = ∣
dk(0)

dk
∣Π(k(0)(k)),

or, inverting the relation

Π(k(0)) = ∣
dk

dk(0)
∣Π̃(k(k(0))).

Hence, we can find q > 0, in general different from kF , such that Π(k) = 0 if ∣ k ∣> q. The set of Bethe
equations for finite N , equation (2.28), becomes an integral equation in the thermodynamic limit, since we can
make the replacement

N

∑
l=1

f(kl) = N ∫ dkΠ̃(k)f(k),

and the Bethe equations become

k = k(0) + 2ρ ∫ dκΠ̃(κ)θ((k− κ)/2).

Differentiating the Bethe equations above with respect to k, and using ρ = kF/π we have

1 = 2πρΠ̃(k) + ρ∫
q

−q

dκΠ̃(κ)θ′((k− κ)/2).

Above, Π̃(k) = 0 for ∣ k ∣> q, as we already mentioned. The value of q is to be fixed from the
normalization condition

∫
q

−q

dκΠ̃(κ) = 1.

The Bethe integral equation, equation (2.34), must be solved numerically. However, we may consider the
strongly interacting limit and obtain the first few orders in perturbation theory from the Bethe integral
equation (2.34). To do this, we begin with the zero-th order term, corresponding to 1/g = ∞. In this case, 
θ′(k) = 0 and therefore Π̃(k) = 1/2πρ, and q = kF . To leading order in 1/g, θ′(k) = 2ℏ2k/g, and the
integral equation becomes

1 = 2πρΠ̃(k) −
2ℏ2ρ

mg
∫

q

−q

dκΠ̃(κ) +O(g−2),
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which is solved with kF/q = 1 + 2ℏ2ρ/mg and Π̃(k) = 1/2q. If we recall that the one-dimensional
scattering length is related to g as g = −2ℏ2/ma (see equation (1.118)), these first order relations simplify to

Π̃(k) =
1 − ρa

2kF
,

q

kF
=

1

1 − ρa
.

As one might have expected, the leading order correction to the rapidity distribution gives the exact

second-order correction to the ground state energy. Using E =
N

∑
l=1

ℏ2k2
l /2m → N ∫ dkΠ̃(k)ℏ2k2/2m, we

obtain, for the first order energy E (1),

E (1) = N
ℏ2k2

F

6m(1 − ρa)2
=

E (0)

(1 − ρa)2
,

where E (0) is the ground state energy of Girardeau’s bosons or, equivalently, non-interacting fermions.
To this order, quite interestingly, the ground state energy coincides with the ground state energy for hard core
bosons with diameter a. However, we have derived these relations for repulsive bosons, which means that 
a < 0.

The Bethe ansatz also allows for an exact computation of the thermodynamic properties of the Lieb–
Liniger model (or any other Bethe ansatz-solvable model, for that matter). The standard method to do this is
due to Yang and Yang, and is called Yang–Yang thermodynamics, or the thermodynamic Bethe ansatz. The
arguments to obtain these thermodynamic properties are entropic in nature, and involve somewhat
complicated statistical methods (see [3]). However, we may replace these arguments and methods with other
far simpler, yet rigorous arguments [4]. These, obviously, also involve entropy, leading to the same occupation
probability as in Yang–Yang thermodynamics [3]. Now let us define a real variable with dimensions of
momentum (or inverse length), and call it k(0). Given T , L and μ, let us suppose that k(0) = 2πn/L, with n
being integers, is distributed according to the following probability density

Πβ(k
(0)) = A

1

eβ(ε(k
(0))−μ) + 1

.

Above, A is a normalization constant, and ε(k(0)) is a symmetric, positive, smooth function of k(0),
which also depends implicitly on the temperature through β = 1/kBT . Equation (2.40) is the maximum
entropy distribution for k(0), if all k(0)’s have to be different from each other (therefore the Fermi distribution)
and, since k(0) is discretized on a regular grid, we can take the thermodynamic (continuum) limit, L → ∞, so
that A = 1/2πρ(μ), where ρ = ρ(μ) is the density, which depends on the chemical potential. We now define 
ε(k(0)) = ℏ2k2/2m, where k and k(0) are related via the Bethe ansatz equations (in their discrete form). This
means that, in the continuum limit, we have, for the (internal) energy E of the system

E = N ∫ dkΠ̃β(k)
ℏ2k2

2m
= N ∫ dk(0) 1

2πρ(μ)

ε(k(0))

eβ(ε(k
(0))−μ) + 1

,

and ρ(μ) is fixed by normalization, that is ∫ dkΠ̃β(k) = 1. Putting everything together, and proceeding
as for the ground state, we obtain the following integral equation

G(k) = 1 + ∫ dκ

2π

θ′(k− κ)G(κ)

exp[β(ℏ2κ2/2m− μ)] + 1
,
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where G is defined via

Π̃β(k) =
G(k)/2πρ(μ)

exp[β(ℏ2k2/2m− μ)] + 1

The thermodynamic Bethe equation, together with the normalization condition, must be solved
numerically. But once more, we can do some perturbation theory in 1/g, near Girardeau’s point. If 1/g = 0,
then G(k) = 1, and the thermodynamics in Girardeau’s hard core limit is, of course, identical to that of a non-
interacting Fermi gas. To leading order in 1/g, equation (2.42) is solved by

G(k) =
1

1 + I(β,μ)a
,

where

I(β,μ) = ∫ dκ

2π

1

exp[β(ℏ2κ2/2m− μ)] + 1
.

Imposing normalization on Π̃β, we obtain

I(β,μ) =
ρ(μ)

1 + ρ(μ)a
,

and, therefore

Π̃β(k) =
1 − ρ(μ)a

2πρ(μ)

1

exp[β(ℏ2k2/2m− μ)] + 1
,

that is, the distribution is equivalent to that of a free Fermi gas with rescaled density ρ̃ = ρ/(1 − ρa).
Now that we have completely solved for the energetics and thermodynamics of the Lieb–Liniger model,

and obtained the leading order corrections to O(1/g), we can make some predictions about the contact which,
in turn, gives us information about short-distance and large-momentum asymptotics of correlation functions.
Using the adiabatic theorem, equation (1.123), we obtain for the contact in the ground state

ℏ2C

m
= 2aE (0) ρa

(1 − ρa)3
,

which is exact to O((ρa)2). We can also extract the pressure (to this order) in the ground state using the
pressure relation, equation (1.129), obtaining

P =
2E (0)

(1 − ρa)3
,

where E (0) = E (0)/L is the non-interacting fermionic ground state energy density. Correlation functions,
beyond the short-distance limit, can be calculated using the Bethe ansatz wave functions. However, these are
rather complicated calculations that go beyond the scope of this book, and we refer the reader to the research
literature on this topic [5].

2.3 Attractive Lieb–Liniger model. McGuire’s solution
The attractive Lieb–Liniger model is also an exactly solvable problem. The ground state—called McGuire’s
solution—in vacuum, is a deeply bound state representing a bright soliton. Although McGuire’s original
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solution, reference [6], is very instructive, we present here a much easier route to obtaining the ground state.
Consider the following operators Ai (i = 1,… ,N),

Ai =
∂

∂xi
+ λ

N

∑
1=j(≠i)

sgn(xi − xj),

and the following SuSy Hamiltonian (see volume 1),

HSuSy =
ℏ2

2m

N

∑
i=1

A
†
iAi.

Since A†
iAi is a positive operator, the ground state energy of HSuSy is bounded from below as E0 ⩾ 0.

Hence, if we can find ψ such that Aiψ = 0 for each i = 1,… ,N , and ψ is normalizable, then it is the many-
body ground state. It is trivially verified that

ψ(x1,… ,xN) =
N

∏
i<j=1

e−λ∣xi−xj∣

is annihilated by all Ai’s. Therefore, it is the ground-state energy of HSuSy and its energy is zero if λ > 0
. We now expand HSuSy and find that

HSuSy =
N

∑
i=1

p2i
2m

−
ℏ2λ

m
∑
i≠j

δ(xi − xj) + C

Therefore, the attractive Lieb–Liniger Hamiltonian is given by HSuSy up to an offset C, identifying the
coupling constant g = −2ℏ2λ/m. From this constant (see problem 4), we obtain the ground state energy of
the Lieb–Liniger model as E0 = −C.

2.4 Spinless Bose–Fermi duality without hard cores
In chapter 1, we looked as carefully as possible at the issues involving a low-energy theory for one-
dimensional interacting fermions. The resulting model, called the Cheon–Shigehara model, requires some
heavy regularization and renormalization, and we saw that the only easy way of achieving this was by means
of lattice discretization and the subsequent pass to the continuum limit. In that case, it appears quite obvious
that there must be a one-to-one Bose–Fermi mapping in the continuum limit between the Lieb–Liniger and
Cheon–Shigehara models. This will be the first proof we work out below. The continuum version of the
model, without placing the particles on a lattice, however, has its own interest, and we would be missing out
on a lot of nice and heavy machinery if we did not go through the proof of Bose–Fermi duality directly in the
continuum. And we shall do this in two different ways: (i) standard regularization–renormalization and (ii)
generalized function algebras. The first method, while quite standard a priori, requires the inclusion of three-
body forces. The second method, much less standard, gives essentially a free proof of duality. However, it is
very formal and not computationally friendly.

2.4.1 Proof I. Bosons and fermions on a lattice
We begin by restating the lattice Hamiltonian that lead to a well-defined continuum limit for fermions in the
form of the Cheon–Shigehara model. This is given, in second quantization, by

H = −J∑
j

(c†jcj+1 + c
†
j+1cj − 2c†jcj) + V0∑

j

njnj+1.
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Above, J = ℏ2/2md2 is the tunnelling rate, cj (c
†
j
) is a fermionic annihilation (creation) operator at lattice

site j (with j integer, and the position of the particles x = jd), while V0 = −2J/(1 − d/a) is the
nearest-neighbour interaction strength (see equation (1.147)).

What is usually done in the lattice model is to apply the so-called Jordan–Wigner transformation, which
maps fermions onto hard core bosons. The reader might be disappointed, but can be reassured by the fact that,
in the continuum limit, the points at which particles meet form a set of vanishing (Lebesgue) measures, so the
hard cores are not relevant, if the interaction is properly taken care of. Instead of the Jordan–Wigner
transformation, which is a mapping in second quantization, we are going to use first quantization and
Girardeau’s mapping on the lattice. The action of the Hamiltonian on a first-quantized wave function is given
by

Since we are dealing with spinless fermions, ψ must be antisymmetric under the exchange of any two-
particle coordinates, which implies that ψ(x1,… ,x,… ,x,… ,xN) = 0. The only issue for the Bose–Fermi
mapping could occur when two or more particles neighbour each other. However, if we set

ψB(x1,… ,xN) = ψ(x1,… ,xN)
N

∏
i<j=1

sgn(xi − xj),

with sgn(0) = 0, we see, immediately, that for an odd number of particles and periodic boundary
conditions, the action of H on the bosonic wave function ψB is identical to its action on the fermionic one ψ,
equation (2.55). Therefore, since the local transformation ∏

i<j

sgn(xi − xj) is unitary in the subspace of totally

symmetric (bosons) or totally antisymmetric (fermions) N-body wave functions with a hard core condition 
ψ(x1,… ,x,… ,x,… ,xN) = 0. This finishes the proof of the Bose–Fermi mapping on the lattice.

To prove that the resulting eigenstates in the continuum limit correspond to those of the Lieb–Liniger
model for bosons, and therefore the Cheon–Shigehara model for bosons, we may solve the stationary
Schrödinger equation using the Bethe ansatz, and prove that in the continuum limit the bosonic Bethe wave
functions become those of the Lieb–Liniger model except on a set with vanishing Lebesgue measure, in the
zero-filling limit (corresponding to finite density in the continuum). Let us then solve the hard core Bose gas
problem on the lattice using the Bethe ansatz. We proceed just as in the Lieb–Liniger model. Take a region Γ1,
defined as

Γ1 = {(x1,… ,xN) ∈ Zd : x1 < x2 … < xN}.

We do not need to include points with xi = xj since the wave function vanishes there. In Γ1, we write

ψB(x1,… ,xN) = ∑
P

a(P)e
i

N

∑
j=1

kPjxj

,

which is identical to what we had in the Lieb–Liniger model, with the same notation. But now, instead of
differentiating the wave function to satisfy the boundary condition, we take any two particles, say x1 and x2,
and put them one lattice site apart, that is, x2 = x1 + d. At that point in Γ1, the action of the Hamiltonian on
the wave function, using the hard core condition, is given by

(Hψ)(x1,… ,xN) = − J
N

∑
i=1

∑
μ=±1

ψ(x1,… ,xi + μd,… ,xN) + 2JNψ(x1,… ,xN)

+ V0

N

∑
i<j=1

[δxi,xj+d + δxi,xj−d]ψ(x1,… ,xN).
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The dots ‘…’ above correspond to the action of the Hamiltonian on particles j > 2. Assume, first, that 
xi+1 − xi > d for all i ≠ 1, and that xN − x1 ≠ (Ls − 1)d, with Ls the number of lattice sites. Hence the
contributions marked with ‘…’ are trivial, in the sense that they give

… = H
(N−2)
0 ψB = −2J∑

P

a(P)[exp(i
N

∑
l=1

kPl
xl)

N

∑
j=3

[cos(kPj
d) − 1]]

Clearly, for ψB to satisfy the Schrödinger equation at these points of Γ1, we must have

which is trivially verified. Since the phase shifts in the lattice model have Lieb–Liniger’s phase shifts as
continuum limit, we easily conclude that the former is equivalent to the latter in this limit.

2.4.2 Proof II. Non-abelian algebra
We proceed now to use an algebra of generalized functions to prove Bose–Fermi duality. While this can be
done for more general effective field theory (EFT) interactions, including but not limited to three-body
interactions, we will only present the proof for two-body low-energy (LO) EFT interactions, that is, Lieb–
Liniger to Cheon–Shigehara duality. Generalized function algebras are used to regularize and renormalize
problems in a very direct, yet formal manner. The strange-looking products are nothing but the consequence of
one particular choice of regularization, but the final, renormalized results, are independent of this particular
choice.

The algebra of generalized functions we discuss here is due to Shirokov—Shirokov’s algebra, from now
on. The formal math behind Shirokov’s algebra is rather complicated, and we only provide here some naïve
justification. The interested reader is referred to Shirokov’s original work in reference [7].

We define a product (*) of generalized functions such that

sgn(x) * sgn(x) = 1, ∀x ∈ R.

If we impose Leibniz’s rule, then

0 =
d

dx
[sgn(x) * sgn(x)] = 2δ(x) * sgn(x) + 2 sgn(x) * δ(x),

that is, the delta and signum generalized functions anticommute, or

{sgn(x), δ(x)} = 0.

We now differentiate δ(x) * sgn(x), obtaining

Hence, the anticommutator

(HψB)(x1,x1 + d,x3,… ,xN) = −J[ψB(x1 − d,x1 + d,… ,xN) + ψB(x1,x1 + 2d,… ,xN)] +⋯

+4JψB(x1,x1 + d,… ,xN) + V0ψB(x1,x1 + d,… ,xN) +⋯.

− J[ψB(x1 − d,x1 + d,… ,xN) + ψB(x1,x1 + 2d,… ,xN)]

+ 4JψB(x1,x1 + d,… ,xN) + V0ψB(x1,x1 + d,… ,xN)

= −2J∑
P

a(P)[exp(i
N

∑
l=1

kPl
xl)

2

∑
j=1

[cos(kPj
d) − 1]],

d

dx
[δ(x) * sgn(x)] = δ′(x) * sgn(x) + 2δ(x) * δ(x)

= −
d

dx
[sgn(x) * δ(x)] = −2δ(x) * δ(x) − sgn(x) * δ′(x).
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{δ′(x), sgn(x)} = −4δ(x) * δ(x).

We take the anticommutator above, and * -multiply it with the signum, obtaining

δ′(x) + sgn(x) * δ′(x) * sgn(x) + 4δ(x) * δ(x) = 0

Now, the first two generalized functions above have negative parity, the third one has positive parity.
Hence, δ(x) * δ(x) vanishes identically, and we have the two identities

δ(x) * δ(x) = 0,

{δ′(x), sgn(x)} = 0.

In fact, it is now easy to prove that

{δ(m)(x), sgn(x)} = 0, ∀m ∈ N.

We already have all we need to prove Bose–Fermi duality. The innocent looking regularization of the
product of two signum functions in equation (2.62) accomplishes something very useful: Girardeau’s Bose–
Fermi mapping, which is a local unitary transformation for hard core particles, becomes unitary for arbitrary
particles! The only price to pay is that all products become Shirokov algebra’s * -products.

Take the Lieb–Liniger Hamiltonian,

H =
N

∑
i=1

p2i
2m

+ g

N

∑
i<j=1

δ(xi − xj).

Let ψB be a bosonic eigenstate of H. Then, ψF = ∏
i<j

sgn(xi − xj)ψB is an eigenstate of HF , given by

where all singular products of distributions are to be taken as * -products. The alert reader may
immediately point out that if we take two particles, for simplicity, then the even-wave Dirac delta interaction
becomes, for fermions

g sgn(x1 − x2)δ(x1 − x2) sgn(x1 − x2) = −gδ(x1 − x2),

because of the anticommutation relation between signum and Dirac delta. It then may appear as if
fermions do not feel this even-wave interaction. However, take a two-body fermionic eigenstate, with energy 
E, ψF (x1,x2) = sgn(x1 − x2)ψB(x1,x2), and enact equation (2.73) on it. We obtain

−gδ(x1 − x2) sgn(x1 − x2)ψB(x1,x2) = g sgn(x1 − x2)δ(x1 − x2)ψB(x1,x2).

Now apply the kinetic energy, in the relative coordinate x = x1 − x2, on 
ψF (x1,x2) = exp(iKX) sgn(x)ψB(x), and we obtain

−
ℏ2

m
sgn(x)

∂ 2

∂x2
ψB,

HF = −
ℏ2

2m

N

∑
i=1

N

∏
l<k=1

sgn(xl − xk)
∂ 2

∂x2
i

[(
N

∏
l′<k′=1

sgn(xl′ − xk′))⋅]

+ g

N

∑
i<j=1

(
N

∏
l<k=1

sgn(xl − xk))δ(xi − xj)(
N

∏
l′<k′=1

sgn(xl′ − xk′)),
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so that

HFψF (x1,x2) = sgn(x1 − x2)EψB(x1,x2) = EψF (x1,x2).

Hence, indeed, the even-wave, Dirac delta interaction does not have a trivial action on fermionic states!
This is solely due to Shirokov’s algebraic product. If we generalize this to the many-body problem, and we
take ψF = [∏

i<j

sgn(xi − xj)]ψB, with ψB a bosonic eigenstate of the Lieb–Liniger model with energy E, we

see immediately that HψF = EψF .
The above analysis proves that there is such unitary transformation between bosons and fermions. Then,

obviously, the unitarily transformed Hamiltonian has the fermionic dual states as eigenstates. But this is not
very useful, and does not connect with previous analyses. To correct this, let us rewrite HF  in equation (2.72)
as HF = H0 +W + V , with H0 the non-interacting Hamiltonian. We obtain

V = −g
N

∑
i<j=1

δ(xij),

W = −
2ℏ2

m

N

∑
i<j=1

[δ′(xij)S(xij)] −
4ℏ2

m

N

∑
i<j<k=1

δ(xij)δ(xik).

The three-body term is not necessary in this formalism. However, note that a three-body counter term
must be included—and removed appropriately in the end—when regularizing and renormalizing the N-body
problem for N > 2. This was done with standard renormalization in reference [8], and with either Danilov–
Pricoupenko filtering or with a counter term in chapter 7 of volume 1.

2.4.3 Proof III. Continuum regularization and renormalization
We already have clues as to what the fermionic two-body interaction should look like in order to achieve
Bose–Fermi duality. We may do this by regularizing the two-body interaction from Shirokov’s algebra, using
LO fermionic EFT or using some other regularization scheme. In order to connect with the regularization in
the three-fermion sector, we will use a space representation of the effective interaction as a regularization.

In the relative coordinate x = x1 − x2, let us regularize a contact interaction as

V (x) = V0Θ(b− ∣ x ∣),

where V0 is the interaction strength, and b the diameter of the interaction. To obtain a Dirac delta
interaction with scattering length a, in the zero-range limit, b → 0+, we set the interaction to

V (x) = −
ℏ2

mba
Θ(b− ∣ x ∣) → gδ(x), b → 0+.

To see what the regularized interaction looks like in the context of LO EFT, we obtain the momentum
representation of the interaction, given by

⟨k′∣ V ∣ k⟩ = g
sin(qb)

qb
,

where q = k− k′. The odd-wave interaction, Vo(k′, k) is obtained as

Vo(k′, k) =
1

2
[⟨k′∣ V ∣ k⟩− ⟨k′∣ V ∣ −k⟩],

which reads, explicitly
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Vo(k′, k) = g
k′ sin(kb) cos(k′b) − k sin(k′b) cos(kb)

(k2 − k′2)b
.

Expanding Vo(k′, k) at low-momentum transfers k′ and k, to LO, we obtain the desired effective
interaction

V LO
o (k′, k) =

gb

2
k′k ≡ g1k′k,

which, as expected, concides with the usual LO EFT interaction in the odd-wave channel that we saw in
volume 1. In equation (2.84), we have defined the bare coupling constant g1 ≡ g1(Λ), since b is a spatial
parameter, and the interaction (2.84) is momentum represented, and will introduce a sharp cutoff Λ ∝ 1/b, but
the proportionality constant has to be calculated consistently.

Let us work out the two-fermion problem now to fix g1(Λ) as a function of the scattering length. The
Lippmann–Schwinger equation for the T -matrix has the form

⟨k′∣ T (z) ∣ k⟩ = g1k′k+ g1 ∫
Λ

−Λ

dq

2π
k′q

⟨q ∣ T (z) ∣ k⟩

z− ℏ2q2/m
.

Clearly, the T -matrix takes the form ⟨k′∣ T (z) ∣ k⟩ = t(z)k′k, and equation (2.85) reduces to

t(z) = g1 + g1 ∫
Λ

−Λ

dq

2π
q2

t(z)

z− ℏ2q2/m
,

which is solved by

t(z) =
1

1/g1 − I(z, Λ)
,

where

I(z, Λ) = ∫
Λ

−Λ

dq

2π

q2

z− ℏ2q2/m
.

The result of the above integral, on-shell (z = ℏ2k2/m+ i0+) is listed in appendix A in volume 1, and
is given by

I(ℏ2k2/m+ i0+, Λ) = −
mΛ

πℏ2
− i

mk

2ℏ2
+O(Λ−1).

We use the following renormalization condition, t(0) = g1,R, with g1,R the renormalized coupling
constant. Then, the bare coupling constant takes the form, as Λ → ∞,

1

g1
=

1

g1,R
−

mΛ

πℏ2
.

We match the one-dimensional, odd-wave scattering length a by using equations (5.22) and (5.24) in
volume 1, with

g1,R =
2ℏ2a

m
= −4( ℏ2

m
)

2
1

g
,
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which gives the relation between the fermionic renormalized coupling constant, g1,R and the bosonic coupling
constant g.

The issues at the three-particle level are completely removed by using the regularized interaction in
equation (2.80) with finite b. The interaction strength, however, must be adjusted accordingly. For fermion–
fermion scattering states, we solve the two-body problem at zero energy. Using this regularization, the entire
issue appears to rely on fine tuning, as we require the interaction strength, for small b, to go as ∼ αb−(2+ε),
with ε > 0. The limit, as b → 0, of the scattering length vanishes regardless of α. However, the scattering
length as a function of b, depending on the choice of ε diverges finitely or infinitely many times as we
approach b = 0, which allows for fine tuning to an arbitrary value of our choice (see problem section). It is
best, in a simulation, to choose small but finite b.

2.5 Richardson–Gaudin models
Since recently, experimental capabilities with ultracold atomic systems have been enhanced to the point of
being able to prepare, manipulate and perform measurements on very small systems. In particular, the issue of
how superconducting pairing is built up as the particle number increasing from a few-body to a many-body
scale has been investigated experimentally [9]. One way to deal with fermion–fermion pairing in small
systems, leading to the usual Bardeen–Cooper–Schrieffer (BCS) theory as N → ∞, consists of considering a
model due to Richardson [10], and further refined mathematically by Gaudin. The set of models, all of them
integrable, that can be built, fall under the category of Richardson–Gaudin models. These can be formulated in
arbitrary dimensions but admit a one-dimensional magnetic representation, due to Gaudin (the Gaudin
magnet). Therefore, we study these models here. We follow two very thorough references in the topic, namely
the review by Dukelsky, Pittel and Sierra [10] (more physically oriented), and the excellent PhD thesis by
Claeys [11] (more mathematically oriented).

2.5.1 Gaudin magnet
Let us consider a set of L Hermitian operator charges, Qi, that will allow us to write down an integrable spin-
1/2 chain. Defining the SU(2) Pauli matrices at site j (= 1, 2,… ,L) σα

j
, α = x, y, z, the most general

quadratic operator can be written as

Qi =
N

∑
j(≠i)=1

∑
α=x,y,z

W α
ijσ

α
i σ

α
j ,

where W α
ij

 are real coefficients. A necessary condition for the system we would like to construct to be
integrable is the commutativity of charges, that is, [Qi,Qj] = 0∀i ≠ j. A lengthy but straightforward
calculation results in the condition (α ≠ β ≠ γ ≠ α and i ≠ j ≠ k ≠ i below)

W α
ijW

γ
jk +W

β
jiW

γ
ik −W α

ikW
β
jk = 0.

A particular solution that solves equation (2.93) consists of imposing W α
ij = −W α

ji
 (antisymmetry, just

as in the construction of Lax matrix entries, see volume 1). Moreover, for S z-conserving systems, that require 
[S z,Qi] = 0 (S z = ∑

i

σz
i/2), we further obtain

W x
ij = W

y
ij ≡ Xij,

W z
ij ≡ Yij.
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With the above relation, together with condition (2.93), one admissible solution that is of interest to BCS
pairing is Xij = Yij, with

Xij =
1

εi − εj
,

where εi (i = 1, 2,… ,L) are real parameters. We can now immediately write down a Hamiltonian as a
linear combination of the L charges Qi as

H = 2
L

∑
i=1

ξiHi.

By construction, H commutes with all charges and all charges commute with each other. We can rewrite 
H, up to a constant offset, in a more convenient manner as (see problem 2)

H = ∑
i≠j

ξi − ξj

εi − εj

→
σ i ⋅

→
σ j,

where →σ i = (σx
i ,σ

y
i ,σ

z
i ) is the vector of spin-1/2 Pauli matrices. To connect the Gaudin magnet to the

pairing problem, we may add an innocuous term to each of the charges (since we have included S z-
conservation), simply as

Qi → Q̃i + S z
i ,

H → H̃ + ∑
i

ξiS
z
i .

We shall slightly abuse the notation and write H and Qi when we mean H̃ and Q̃i
 from now on.

2.5.2 Superconducting Richardson model
Let us consider a system of fermions in the second quantization. It is described by L energy degrees of
freedom, which we call energy levels. Each energy level is labelled l = 1, 2,… ,L, and is Ωl-fold degenerate.
Each state within the degenerate subspace in level l is labelled (lml), and we define the so-called pseudospin 
Sl via the multiplicity of the state as Ωl ≡ 2Sl + 1. Within a level, time-reversed partners come in pairs as 
(lm) and (lm̄).

After taking all the considerations above into account, let us define the following operators

τ z
l =

1

2
∑
m

c
†
lmclm −

Ωl

4
,

τ +
l

=
1

2
∑
m

c
†
lm
c
†
lm̄
,

τ −
l

=
1

2
∑
m

clm̄clm.

Above, c†lm (clm) is a fermionic creation (annihilation) operator in state (lm), that is

{clm, c
†
l′m′} = δll′δmm′.
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The operator τ z
l

 plays the role of number operator in level l, while τ +
l

 (τ −
l

) creates (destroys) a paired state in
level l with a time-reversed pair. We now calculate all commutators, which show that τ ±

l
 are ladder operators

for the SU(2) algebra, while τ z
l

 is a spin-1/2 Pauli matrix. Therefore, these operators close the SU(2)
algebra. We evaluate one of the commutators explicitly, mainly because the notation can be rather confusing.
In equation (2.101), the index m in the sum runs through all possible values of m within the l-level. However,
in equations (2.102) and (2.103), the index m runs only through half of the values, for otherwise the time-
reversed partners would appear twice in the sum and with opposite sign, and τ ±

l
 would be identically zero. As

a simple track keeping device, we use m > 0 in equations (2.102) and (2.103), and all m ≠ 0 for τ z
l

. Then, we
can simply denote the time-reversed partner of (lm) as (lm̄) ≡ (l, −m). The commutator is easily evaluated
by observing that

[c†
lm
clm, c

†
l′m′c

†
l′m̄′] = δll′(δmm′c

†
lm
c
†
lm̄

+ δmm̄′c
†
lm̄
c
†
lm
).

Using the above relation, we obtain, explicitly

[τ z
l , τ

+
l′ ] =

δll′

4
[∑
m>0

c
†
lm
clm̄ +∑

m<0

c
†
lm̄
c
†
lm
] =

δll′

2
∑
m>0

c
†
lm
c
†
lm̄

= δll′τ
+
l
.

Similar calculations lead to the standard relations for a SU(2) algebra, that we summarize as

[τ z
l , τ

±
l′ ] = ±δll′τ

±
l ,

[τ +
l , τ −

l′ ] = 2δll′τ
z
l .

As promised earlier in the section, we can build a pairing (or Richardson) Hamiltonian as a Gaudin
magnet. We simply write down the Gaudin magnet Hamiltonian, equation (2.98) including ∑

l

ξlS
z
l
 (see

equation (2.100)), in terms of the fermionic field operators, that is

H = ∑
i≠j

ξi − ξj

εi − εj

→
τ i ⋅

→
τj +

1

2
∑
i

ξiτ
z
i .

Using τ ±
i = τ x

i ± iτ
y
i

, we obtain

Inserting the definitions of τ ±
i

 and τ z
i

 in terms of the fermionic operators, equations (2.101), (2.102) and
(2.103), and defining njm = c

†
jmcjm, we obtain

H = ∑
i≠j

ξi − ξj

εi − εj
( 1

4
(τ +

i + τ −
i )(τ +

j + τ −
j ) −

1

4
(τ +

i − τ −
i )(τ +

j − τ −
j )+ τ z

i τ
z
j )

+
1

2
∑
i

ξiτ
z
i

= ∑
i≠j

ξi − ξj

εi − εj
(τ +

i τ
−
j + τ z

i τ
z
j ) +

1

2
∑
i

ξiτ
z
i .

H =
1

4
∑
i≠j

ξi − ξj

εi − εj
∑

mm′>0

(c†imc
†
im̄
cjm̄cjm + (nim + nim̄)(njm′ + njm̄′))

+
1

4
∑
i

ξi ∑
m>0

(nim + nim̄).
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The Hamiltonian (2.111) starts to look like a pairing Hamiltonian, albeit in an usual form. We need to make
some simplifications, and a choice. First, we note that the number of fermions in level j is just 
Nj = ∑

m≠0
njm, so that the rightmost term in equation (2.111) simplifies to ∑

i

ξiNi/4, and the second term

becomes NiNj. Next, we make the choice ξi = gεi, with g a coupling constant, and the Richardson
Hamiltonian becomes

where we have defined N = ∑
i

Ni. Well, well, isn’t that pretty? A nice and simple-looking BCS-type

Hamiltonian, called Richardson’s model. We now know—or at least have a huge suspicion—that this model is
integrable. It turns out it is also exactly solvable. How do we solve it? Clearly, we should turn back to
Gaudin’s magnet, which we solve next and connect its solution to the specifics of the pairing system. Just to
have a cleaner Hamiltonian, we may remove the last two terms in equation (2.112), since they are constants of
motion, and redefine the Hamiltonian as

H =
g

4
∑
i≠j

∑
m,m′>0

c
†
imc

†
im̄cjm̄′cjm′ +∑

i,m

ξic
†
imcim.

2.5.3 Exact solution of the Gaudin magnet and Richardson’s model
In section 2.5.1 we showed the existence of L conserved charges for Gaudin’s magnet. We have not proved
that they are independent, but this can be proved (see [11]). To solve the problem exactly, we try and find
simultaneous eigenstates of all charges Qi. Since the Hamiltonian H is a linear combination of charges, then
any simultaneous eigenstate of all Qi (i = 1, 2,… ,L) is also an eigenstate of H. Hence, we would try to
solve

Qi ∣ q1, q2,… , qL⟩ = qi ∣ q1, q2,… , qL⟩, i = 1, 2,… ,L.

The eigenvalues qi—the values taken by the conserved charges—will be called rapidities, since the
solution will take the form of a Bethe ansatz. Following [10], we write down the solution in the fermionic
representation (i.e., for Richardson’s pairing model). We define the following unpaired state

∣ ν⟩ =∣ ν1,… , νL⟩,

with ν = ∑
j

νj, such that Aj ∣ ν⟩ = 0 and Nj ∣ ν⟩ = νj ∣ ν⟩. It is now easy to see that the eigenstates

take the form

∣ ψ⟩ = B
†
1 …B

†
M ∣ ν⟩,

where the operators B†
α are given by

B†
α = ∑

j

1

εj −Eα

A
†
j,

and the so-called Richardson’s roots satisfy the following equation

H =
g

4
∑
i≠j

∑
m,m′>0

c
†
imc

†
im̄cjm̄′cjm′ +

g

4
∑
i≠j

NiNj +
1

4
∑
i

ξiNi

=
g

4
∑
i≠j

∑
m,m′>0

c
†
imc

†
im̄
cjm̄′cjm′ +∑

i

ξiNi +
g

4
N 2 −

g

4
∑
i

N 2
i ,
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1 − 4g∑
j

νj/2 − Ωj/4

2εj −Eα

+ 4g ∑
β(≠α)

1

Eα −Eβ

= 0.

Last but not least, the energy associated with the eigenstate is given by

E = ∑
j

εjνj +∑
α

Eα.

2.6 Luttinger liquids
In higher dimensions (D > 1), there is a low-energy theory for fermionic quasiparticles, called Fermi liquid
theory, in which excitations are single-particle entities with a finite lifetime [12]. This theory, which is very
standard, will not be described in this book. In one spatial dimension, however, Fermi liquid theory breaks
down. This is mainly due to non-analyticities, which can already be seen in perturbation theory. Moreover,
one-dimensional systems are interesting on their own, and, even more importantly, the distinction between
bosons and fermions is rather blurred in this case. Therefore, we attempt to build an effective low-energy
theory which should be capable of describing bosons and fermions alike. This is what is called Luttinger
liquid theory. Out of the many routes that we can take to develop the theory, we will follow the constructive
path. Firstly, we will define the massless Thirring model. Then, we will proceed to explain the bosonization
technique, and show how generic, non-relativistic gases may be described using the effective model, even
though the dispersion relations are not exactly linear anywhere.

2.6.1 Massless Thirring model
The massless Thirring model is a simple relativistic quantum field theory (QFT) in (1 + 1) dimensions. It
features massless fermions coupled via a contact interaction. We can write down its Hamiltonian density,
defined as (ℏ = 1 and the speed of light c = 1)

H = −i(ψ†
1∂xψ1 − ψ

†
2∂xψ2)+ 2gψ†

1ψ
†
2ψ2ψ1,

where ψ = (ψ1,ψ2) is a two-dimensional fermionic spinor, such that {ψi(x),ψ
†
j(x′)} = δijδ(x− x′),

and g is a coupling constant. It turns out that the massless Thirring model is exactly solvable. Its solution, as
trivial as it may seem at first sight, is plagued with subtleties and must be regularized and renormalized with
care. We place the system on a ring with length L, so its Hamiltonian H is simply

H = ∫
L

0
dxH(x).

In a condensed matter language, the massless Thirring model corresponds to two fermionic fields with
linear dispersion relation interacting via a zero-range potential. One of the fermionic components moves
rightwards, and the other component moves leftwards. Collisions only occur between a left-moving and a
right-moving fermion. In the first quantization, the two-body problem describing elastic collisions between a 1
- and a 2-fermion amounts to solving the stationary Schrödinger equation

−i[∂x1ϕ(x1,x2) − ∂x2ϕ(x1,x2)] + gδ(x1 − x2)ϕ(x1,x2) = Eϕ(x1,x2),

where ϕ is the coefficient of the two-body, second-quantized wave function ∣ Φ⟩,

∣ Φ⟩ = ∫
L

0
dx1 ∫

L

0
dx2ϕ(x1,x2)ψ

†
1(x1)ψ

†
2(x) ∣ 0⟩,
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where ∣ 0⟩ is the particle vaccuum, defined via ψi(x) ∣ 0⟩ = 0 (i = 1, 2) ∀x ∈ [0,L). The Schrödinger
equation is separated into centre-of-mass (X = (x1 + x2)/2) and relative (x = x1 − x2) coordinates, as
usual, so that

ϕ(x1,x2) = exp(iKX)ϕ(x),

and equation (2.122) becomes

−2i∂xϕ(x) + gδ(x)ϕ(x) = Eϕ(x).

To connect with the first-quantized version of the problem completely, we write down the full first-
quantized wave functions as

∣ Φ⟩ = ϕ(x1,x2) ∣ 12⟩− ϕ(x2,x1) ∣ 21⟩.

We take the limit L → ∞ to solve for scattering states before attempting the calculation. Let us first
assume that instead of a delta interaction, we replace gδ(x) with a smooth potential V (x). Then

ϕ(x) = exp [iEx/2 − i∫ dxV (x)/2].

That is, the wave function simply picks up a phase as it goes through the potential. We try to use this for
the Dirac delta function, for which ∫ V (x)dx = gθ(x), where θ(x) is the Heaviside step function. We would
obtain

ϕ(x) = exp [iEx/2 − igθ(x)/2].

We must now be very careful when operating using the exponential form (2.128). Let us try to
differentiate it using the standard chain rule. We would obtain

ϕ′(x)
?
= i

E

2
ϕ(x) − i

g

2
δ(x)e−igθ(x)/2.

Now we have a problem. The first term on the right-hand-side of equation (2.129) is fine, but the second
term contains the product of two distributions. As such, it is undefined. It may well be −igδ(x)/2 or 
−igδ(x) exp(−ig/2) or, in fact, anything we want it to be. Let us try a different path. Since, for all x ≠ 0, the
wave function (2.128) takes the form

ϕ(x) = eiEx/2[θ(−x) + θ(x)e−ig/2],

we may differentiate the above expression so that

ϕ′(x) = i
E

2
ϕ(x) + δ(x)(e−ig/2 − 1).

Now, at the very least, we see that ϕ′ remains a distribution! Equation (2.130) is indeed the correct way
of defining the eigenstate. This is not so satisfying, since how could we choose one form or the other a priori?
The answer comes from the theory of distributions itself. Let us forget about usual derivatives, and instead
work out the weak derivative of the exponential representation of ϕ or, to simplify things further, of 
ϕ̃(x) = exp(−igθ(x)/2). We write, for a smooth function f that vanishes as x → ±∞,

∞ ∞
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We see that this is indeed the derivative we were looking for, that is,

ϕ̃′(x) = δ(x)(e−ig/2 − 1).

This means that we identify, as distributions

θ(−x) + e−ig/2θ(x) = exp(−igθ(x)/2),

and their derivatives are δ(x)(exp(−ig/2 − 1)). We still have one problem, though. Although we saw,
naïvely, that the wave function is an eigenstate, in reality it is not when written as in equation (2.130). Besides
that, the wave function ϕ(x) is a distribution and so is δ(x). Therefore, their product remains undefined. We
invoke Shirokov’s algebra. Proceeding just as with the signum function, we find that [θ(x)]2 = θ(x) and,
differentiating it and applying Leibniz’s rule, we obtain

δ(x) = δ(x)θ(x) + θ(x)δ(x).

Using that θ(x) + θ(−x) = 1 (as a distribution or generalized function), we have

δ(x)θ(−x) = θ(x)δ(x).

Therefore, we obtain

δ(x)[θ(x) + θ(−x)] = δ(x),

or, equivalently, that every time we encounter θ(0) we may set it to 1/2. Now we are ready to try once
more to obtain an appropriate eigenstate, by setting

ϕ(x) = eiEx/2[θ(−x) + λθ(x)].

Inserting the above wave function into the Schrödinger equation, we find that

λ = λ(g) = e−iξ(g),

ξ(g) = 2 arctan(g/4).

We see now that the problem, upon appropriate use of distributions and regularization–renormalization,
yields a well-defined answer. We can check this even further by going to the momentum representation and
solving the two-body problem. The T -matrix satisfies the Lippmann–Schwinger equation

T (z) = V + VG0(z)T (z),

which, on-shell (z = 2k+ i0+), after identifying g with g0—the bare coupling constant, takes the form

T (z) =
1

1/g0 − ∫
dq

2π

1

2k− 2q + i0+

=
1

1/g0 + i/4
.

⟨ f ∣ ∂xϕ̃⟩ = ≡ −∫
∞

−∞
dx∂xf * (x)ϕ̃(x) = −∫

∞

−∞
dx∂xf * (x)e−igθ(x)/2

= − ∫
0

−∞
dx∂xf * (x) − ∫

∞

0
dx∂xf * (x)e−ig/2 = −f * (0) + f * (0)e−ig/2

= f * (0)(e−ig/2 − 1).
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We now obtain the position representation of the scattering wave function. The scattered wave ϕs is given by

so the scattering wave function reads, in full

with

ξ(g0) = 2 arctan(g0/4).

Hence, the renormalization condition reads g0 = g, and we have arrived at the same result. Note,
however, that in position space special care (using Shirokov’s algebra) was required. In momentum space, we
have assumed that k is not of O(Λ), where Λ is a hard cutoff. Otherwise, the real part of the inverse of T (z)
would not vanish identically. In the Thirring model this is not a minor point: the ‘Fermi sea’ is filled and
therefore there are arbitrarily large-momentum scales involved in the problem.

Now that we have solved the two-body problem, we could try to attempt a Bethe ansatz solution. This,
however tempting, is not so trivial, because of the non-trivial scattering at high energies. In fact, we do not
know of an appropriate solution to the Bethe ansatz dilemma, unless the constant phase shift is assumed,
which is only true at finite energies. We may do this, but keeping well in mind that this is not a rigorous
procedure for Thirring’s Hamiltonian, as it is instead the solution to a ficticious integrable model with scale
invariance unbroken at all scales. If we proceed this way, we can write down the (component-symmetric)
Bethe ansatz solution with momenta (k1,… , kN , q1,… , qN) as

The Bethe equations with periodic boundary conditions take the form

ki =
2πni

L
+

2

L
∑
j

arctan(g/4),

qj = −
2πmi

L
−

2

L
∑
i

arctan(g/4).

Above, ni and mi are integers. The ground state (vacuum in QFT) is obtained by selecting a cutoff 
Λ = 2πM/L, with M = Ñ/2 and Ñ  the number of particles (this is where this procedure differs from the
actual Thirring model), and considering the set of Bethe numbers ni = −M + 1,−M + 1,… , 0 and 
mi = 0, 1,… ,M − 1. The ground state energy is nothing but

∣ ϕs⟩ = G0(z)T (z) ∣ k⟩ ⟹ ϕs(x)

=
1

1/g0 − i/4
∫

dq

2π

eiqx

2k− 2q + i0+
= −θ(x)

i/2

1/g0 + i/4
eikx,

ϕ(x) = eikx[1 −
i/2

1/g0 + i/4
θ(x)] = eikx[θ(−x) +

1 − ig0/4

1 + ig0/4
θ(x)]

= eikx[θ(−x) + e−iξ(g0)θ(x)],

∣ Φ⟩ = ∫ dx1 … dxN ∫ ds1 … dsN

N

∏
i=1

eikixi

N

∏
j=1

eiqjxj

N

∏
i′,j′=1

[θ(sj′ − xi′) + e−iξ(g)θ(xi′ − sj′)]

× ∏
i=1

ψ
†
1(xi)

N
N

∏
j=1

ψ
†
2(sj) ∣ 0⟩.



(2.14
9)

(2.15
0)

(2.15
1)

(2.15
2)

(2.15
3)

(2.15
4)

(2.15
5)

(2.15
6)

Since Ñ  is only related to the cutoff Λ = πÑ/L, we rewrite the vacuum energy density as

E0(Λ)

L
= −Λ( Λ

2π
−

1

L
)+

Λ

π
arctan(g/4).

We can now extract the speed of sound (in QFT the speed of light) by considering a particle–hole
excitation at the Fermi point. We remove a particle from ni = 0 and set it at ni = 1. The difference in energy
is simply ω = 2π/L, which implies that the speed of light is unchanged, v = 1, as should be for a Lorentz-
invariant system.

2.6.2 Bosonization of the Thirring and Tomonaga–Luttinger models
The first thing we can do is write down its Hamiltonian in the momentum representation, namely

H = ∑
k

k(c†k1ck1 − c
†
k2ck2) +

g

L
∑
k,k′,q

c
†
k+q,1c

†
k′−q,2ck′,2ck,1.

We perform a canonical transformation to particle and hole operators, as

Upon applying the transformations above, the non-interacting part of Thirring’s Hamiltonian (2.151)
becomes

H0 = ∑
k

∣ k ∣ (a†
kak + b

†
kbk)+E (0),

where E (0) is the (divergent) energy of the non-interacting vacuum

E (0) = ∑
k<0

k−∑
k>0

k.

Since E (0) amounts to a constant energy shift (however infinite), we drop it from here on.
We find now the bosonic operators relevant to bosonization. Define, for q > 0,

ρσ(q) ≡ ∑
k

c
†
k+q,σckσ,

ρσ(−q) ≡ ∑
k

c
†
kσck+q,σ,

for σ = 1, 2. By writing them down in terms of the particle–hole operators, equation (2.152), we find
that

E0(Ñ) =
M

∑
i=1

ki −
M

∑
j=1

qi =
Ñ

L
arctan(g/4) −

4π

L

M

∑
n=1

n

= −
πÑ

L
( Ñ

2
− 1)+

Ñ

L
arctan(g/4).

ck1 = bk, k ⩾ 0,

ck1 = a
†
k
, k < 0,

ck2 = bk, k < 0,

ck2 = a
†
k
, k ⩾ 0.
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[ρσ(−q), ρσ′(q′)] = δσ,σ′δq,q′
qL

2π
.

With these definitions, the interaction is written as

V =
g

L
∑
q>0

[ρ1(−q)ρ2(q) + ρ1(q)ρ2(−q)] +
g

L
N1N2,

where Nσ is the number of σ fermions. Next, we show that, up to a constant, the non-interacting part of
the Hamiltonian can also be written as a quadratic form in terms of ρσ(±q). This is easy to see since

[H0, ρ1(±q)] = ±qρ1(±q),

[H0, ρ2(±q)] = ∓qρ2(±q).

Therefore, up to a constant offset, we have

H0 =
2π

L
∑
q>0

[ρ1(q)ρ1(−q) + ρ2(−q)ρ2(q)].

We now define bosonic operators A1(q) and A2(−q), via

A1(q) = ( 2π

qL
)

1/2

ρ1(−q),

A2(−q) = ( 2π

qL
)

1/2

ρ2(q),

so we can write the Hamiltonian, up to a constant offset, as

Since the Hamiltonian above is quadratic in bosonic operators, we can diagonalize it using a Bogoliubov
transformation. We write

Ã1(q) = A1(q) cosh δ−A
†
2(−q) sinh δ,

Ã2(−q) = A2(−q) cosh δ−A
†
1(q) sinh δ.

To leave the problem diagonal, we have to impose

KL ≡ e2δ =√ 1 − g/2π

1 + g/2π
,

where we have called this quantity KL, the Luttinger parameter. In diagonal form, except for irrelevant
constants, we obtain

H = u∑
q>0

[Ã
†

1(q)Ã1(q) + Ã
†

2(−q)Ã2(−q)],

H = ∑
q>0

q[A†
1(q)A1(q) +A

†
2(−q)A2(−q)

+
g

2π
(A1(q)A2(−q) +A1(q)

†
A2(−q)†)].
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where u is the speed of excitations, given by

u = √1 − (g/2π)2.

This result is both a success and a failure. If we are trying to obtain an effective theory for a system that
is not relativistic (as we shall do below), then surely equation (2.169) is a success: the speed of excitations
must change due to interactions. If we are trying to diagonalize Thirring’s model itself, then it is a catastrophic
failure, for the speed of excitations—the speed of light—cannot change: we must have ‘inadvertently’ broken
Lorentz invariance! Well, in fact, even in the non-relativistic case, further renormalization (we did not need to
renormalize anything to get a finite result) is required. The speed of light in the bare Hamiltonian was set to 
c = 1. However, we need Thirring’s model to give u = 1 once the full solution is obtained, which means that

we should renormalize (without infinities!) the bare speed of light, and set it to c → √1 + (g/2π)2. Then, we
immediately obtain u = 1, as should be. For non-relativistic effective models, this renormalization also needs
to be done, in a different way, and also has to do with (Galilean) relativity.

2.6.3 Haldane’s bosonization
The general usage of Luttinger liquid theory as a low-energy effective field theory for fermions and bosons in
one spatial dimension is due to Haldane, who wrote an extremely influential article in 1981 [13]. The physics
is very neat, and the resulting low-energy theory is just Luttinger’s model. Here, we follow both Haldane’s
pioneering work as well as Giamarchi’s book on one-dimensional ‘quantum’ physics [14].

We begin by assuming we have a one-dimensional system of particles. The first-quantised, space-
represented density operator if the particles are located at fixed positions {xj}j is given by

ρ(x) = ∑
j

δ(x− xj).

We assume the particles are displaced by Δj from their classical crystalline ground state configurations,
corresponding to j/ρ0, where ρ0 is the mean density. That is, xj = j/ρ0 +Δj. We define a smooth classical
field φ(x) such that φ(xi) = 2πj. That is, φ assigns particle labels to individual positions, and is arbitrary
(but smooth) everywhere else. We need the properties of Dirac delta functions, in particular

δ(φ(x) − 2πn) = ∑
i

δ(x− xi)

∣∂xφ(x)∣
.

We must also use the Fourier transform of the periodic delta function,

δ(s− 2πn) = ∑
ℓ∈Z

eiℓs

2π
.

Combining these two properties, we obtain for the density operator

ρ(x) =
∂xφ(x)

2π
∑
ℓ∈Z

eiℓφ(x).

Since the particle positions are not fixed, it is convenient to define a new operator, ϕ = πρ0x− 1
2 φ, so

that the density operator can be rewritten as

ρ(x) = [ρ0 −
1

π
∂xϕ(x)]∑

ℓ∈Z

exp [iℓ(2πρ0x− 2ϕ(x))].
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When taking space-averages, the higher harmonics (∣ ℓ ∣⩾ 1) in equation (2.174), which are highly oscillating,
vanish, and we end up with the following smeared density

ρ(x) ∼ ρ0 −
1

π
∂xϕ(x).

We now define the following creation operator

ψ
†
B(x) = √ρ(x)e−iθ(x),

where θ(x) is some phase operator yet to be determined, and ρ(x) is, at this time, the smeared density,
equation (2.175). The subscript ‘B’ stands for bosonic, and we will try to construct θ(x) such that ψ†

B
 is a

bosonic creation operator, that is, [ψB(x),ψ
†
B(x′)] = δ(x− x′). This commutation relation can be satisfied to

linear order in density fluctuations with respect to the mean density ρ0. We define Π(x) ≡ −∂xϕ(x)/π, and
define θ(x) via

[θ(x), Π(x′)] = iδ(x− x′),

that is, as the conjugate of the fluctuation operator Π(x). We then expand the square root of the smeared
density to O(Π),

√ρ(x) = √ρ0 +
1

2√ρ0
Π(x) +O(Π2).

Dropping higher-order terms in the commutator, we obtain

[ψB(x),ψ
†
B(x′)] =

1

2
[e−iθ(x), Π(x′)eiθ(x′)]+ 1

2
[e−iθ(x)Π(x), eiθ(x′)].

Since [θ(x), Π(x′)] = iδ(x− x′), we have [ f(θ(x)), Π(x′)] = iδ(x− x′)f′(θ(x)) and, using this in
equation (2.179), we obtain the desired result, [ψB(x),ψ

†
B(x′)] = δ(x− x′).

We now reintroduce the higher harmonics into the density operator, equation (2.174), obtaining for the
unsmeared bosonic creation operator

ψ
†
B(x) = [ρ0 −

1

π
∂xϕ(x)]

1/2

∑
ℓ∈Z

exp[iℓ(2πρ0x− 2ϕ)(x)]e−iθ(x).

So far, we have only dealt with bosons. To connect with the rest of the section, where fermions are being
considered (although, as we have seen, for non-relativistic particles bosons and fermions are alike), we define
a fermionic creation operator ψ†(x), as

ψ†(x) ≡ ψ
†
B(x)e

iφ(x)/2.

It appears natural that ψ†(x) is fermionic, sice φ(xj)/2 = πj, and so exp(iφ(xj)/2) is a phase that
changes sign every time a particle’s position is crossed. But to see that it is indeed a fermionic operator, we
calculate its anticommutation relation,

{ψ(x),ψ†(x′)} = e−iφ(x)/2ψB(x)ψ
†
B(x′)e

iφ(x′)/2 + ψ
†
B(x′)e

iφ(x′)/e−iφ(x)/2ψB(x).

We need the commutator [θ(x),ϕ(x′)/π]. But from equation (2.177), we have that

1
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∂x′[θ(x),ϕ(x′)/π] = iδ(x− x′) ⟹ [θ(x),ϕ(x′)/π] =
1

2
sgn(x′−x).

Therefore, we obtain, after working out all the commutators carefully,

{ψ(x),ψ†(x′)} = e−iϕ(x)[ψB(x),ψB(x′)]e
iϕ(x′) = δ(x− x′).

Let us now see what the Hamiltonian should look like. If we have a non-relativistic (Galilean) kinetic
energy, then obviously for bosons, if we take the leading order contributions (necessary for commutation
relations to hold!),

∂xψ
†
B∂xψB → ρ0∂x(e

−iθ(x))∂x(e
iθ(x)) = ρ0[∂xθ(x)]

2.

Of course, the coefficient in front of this part of the Hamiltonian is renormalized and, using dimensional
analysis, we have

H0 =
ℏ

2
∫ dx

uK

π
[∂xθ(x)]

2,

where K is a dimensionless constant and u has dimensions of velocity, and both depend on the
microscopic details of the target many-body system. As for the interaction energy, we may use a Dirac-delta
interaction for bosons, so, to leading order (again, necessary for commutation relations to hold), we have, up
to an irrelevant energy offset,

V =
g0

2
∫ dx[ρ(x)]2 =

g0ρ0

2
∫ dxΠ(x) +

g0

2
∫ dx[Π(x)]2.

Since Π(x) is the fluctuation of the density with respect to the equilibrium value ρ0, its integral vanishes,
so the interaction becomes

V =
g0

2π2
∫ dx[∂xϕ(x)]

2.

Since we have only two fields, we have only two degrees of freedom regarding renormalized parameters,
and we only need to include u and K. Once more, from dimensional analysis

V =
ℏ

2
∫ dx

u

πK
[∂xϕ(x)]

2.

Putting this all together, we have the effective low-energy Hamiltonian

H =
ℏ

2π
∫ dx[uK(∂xθ(x))

2 +
u

K
(∂xϕ(x))

2].

Note that the choice of parameters above is not restrictive, and we may as well call λ1 = uK and 
λ2 = u/K. However, u turns out to be the speed of excitations, and K—the Luttinger parameter—a
parameter that controls long-distance correlation functions. Hence, the choice in equation (2.190) will prove to
be convenient.

We now diagonalize Hamiltonian (2.190), and show that u corresponds with the speed of excitations.
Afterwards, we shall calculate the simplest correlation functions and relate them to the Luttinger parameter K.
To diagonalize Hamiltonian (2.190), we write down the operators θ and ∂xϕ in terms of bosonic creation and
annihilation operators b†q and bq (in the momentum representation). To do this, we use the fact that 
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Π(x) = −∂xϕ(x)/π is the momentum conjugate to θ(x), due to their commutator (2.177). Their expansion in
bosonic operators reads

θ(x) = ∫ dq

√2π
( 1

2 ∣ q ∣
)

1/2

[bqe−iqx + b†qe
iqx],

Π(x) = −i∫ dq

√2π
( ∣ q ∣

2
)

1/2

[bqe−iqx − b†qe
iqx].

The commutator is easily evaluated, and yields the correct result [θ(x), Π(x′)] = iδ(x− x′). After some
lengthy but straightforward algebra, the Hamiltonian takes the form

H =
ℏ

4π
∫ dq ∣ q ∣ [(v1 − v2)(b†qb

†
−q + bqb−q)+ (v1 + v2)(b†qbq + bqb

†
q)],

where we have defined v1 = uK and v2 = π2u/K. We clearly see that H in equation (2.193) is a
bosonic quadratic form and, therefore, we can diagonalize it using a Bogoliubov transformation. Before that,
since the dispersion is linear and positive (∼∣ q ∣), we simplify equation (2.193) to integrate over positive
modes only. It becomes

H =
ℏ

2π
∫

∞

0
dqq[(v1 − v2)(b†qb

†
−q + bqb−q)+ (v1 + v2)(b†qbq + b

†
−qb−q)],

where we have dropped an irrelevant, infinite constant. To diagonalize the Hamiltonian, we use the
following Bogoliubov transformation to new bosonic operators βq and β†

q,

βq = cosh γbq + sinh γb
†
−q.

Setting to zero all non-diagonal terms (∼ β
†
qβ

†
−q

, βqβ−q), implies the following relation

tanh(2γ) =
v1 − v2

v1 + v2
,

and the diagonal form of the Hamiltonian becomes

H =
ℏ

π
∫

∞

0

dqq√v1v2(β†
qβq + β

†
−qβ−q),

where, once more, we have dropped an irrelevant infinite constant. Now we can see that the spectrum, 
ℏω(q) = (ℏ/π)√v1v2q (q > 0) only depends on u. Using v1 = uK and v2 = π2u/K, we immediately see
that

ℏω(q) = ℏuq, q > 0.

This is exactly what we anticipated. Now we proceed to calculate some simple correlation functions and
show that correlations only depend on the Luttinger parameter K. First, just as with the usual bosonization, we
see that the parameter γ in the Bogoliubov transformation is related to K as

e2γ =
K

π
.

Now, let us calculate the density-density correlation function in the ground state (vacuum), for the
smeared density. This simplifies calculations and give the leading order asymptotics.
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⟨ρ(x)ρ(0)⟩ = ⟨(ρ0 +Π(x))(ρ0 +Π(0))⟩ = ρ2
0 + ρ0 ⟨Π(0) + Π(x)⟩+ ⟨Π(x)Π(0)⟩.

We use the Fourier decomposition of the momentum Π(x), equation (2.192), and the inverse of the
Bogoliubov transformation, given by

bq = cosh γβq − sinh γβ
†
−q,

obtaining, after tedious but straightforward algebra,

⟨ρ(x)ρ(0)⟩ = ρ2
0 −

K

2π2x2
.

Since this is a low-energy theory, the above relation (for the smeared densities) is valid as x → ∞. From
equation (2.202), we obtain for the pair correlation function at long distances

g(x) → 1 −
K

2π2(ρ0x)
2
, x → ∞.

From it, the static structure factor takes the form

S(q) =
K

2πρ0
∣ q ∣, q → 0.

Now we have both large-distance (low-energy) and short-distance (high-energy) asymptotics for the
simplest of correlation functions, if we add to Luttinger Liquid theory the theory of short-range correlations
studied in the previous chapter. And, in fact, the relevant quantities, the contact and the Luttinger parameter,
are related to each other. This becomes even more powerful for non-relativistic particles, which is the subject
of the following section.

2.6.4 Non-relativistic gases as Luttinger liquids
Let us consider a non-relativistic system of spinless fermions in one spatial dimension. The low-energy
physics of the problem occurs for momenta around the two Fermi points ±kF . Around these, the Galilean
dispersion becomes approximately linear, since

ε(k) =
ℏ2k2

2m
=

ℏ2k2
F

2m
± ℏvF (k∓ kF ) +

ℏ2

m
(k∓ kF )

2,

where vF = ℏkF  is the Fermi velocity. Establishing an effective theory for non-relativistic fermions
consists of linearizing the dispersion, i.e., dropping the term ∝ (k∓ kF )

2 in equation (2.205), and considering
two species of fermions, one of them right-moving and the other one left moving. Since, moreover, we would
like to get rid of a priori irrelevant scales, we allow k to take on any value in (−∞,∞), although, as we
already know, a cutoff might be eventually required. The non-interacting part of the effective Hamiltonian
becomes

H0 = ℏvF ∑
k

k[c†k+ck+ − c
†
k−ck−]+ C,

with C an irrelevant, infinite constant. Above, ck± are fermionic annihilation operators for right- (+) and
left-moving (−) fermions.

We must now deal with interactions. Clearly, the most important interactions take place between a right-
mover and left-mover with respective momenta near the Fermi points ±kF . In particular, the elastic right-left
interaction takes the usual form
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V2 =
g2

L
∑
kk′q

c
†
k+q,+c

†
k′−q,−ck′−ck+,

where g2 is a coupling constant. Notice how the Hamiltonian H0 + V2 is nothing but Thirring’s model,
with ℏvF ≡ 1 and g2 ≡ g. We may also consider the so-called ‘intrabranch’ interactions between fermions in
the same branch (right- or left-moving). These are typically included as a scattering channel. However, there is
no scattering between chiral fermions and this ‘interaction’, instead, should appear as a renormalization of the
non-interacting, or bare, Fermi velocity. The reason for the absence of scattering is very simple. Total
momentum and total energy conservation within the same branch are equivalent to one another: there is huge
degeneracy which can be dealt with by using flat-band scattering theory (see reference [15]). So let us figure
out what this renormalization should look like. To do this, there are two options. The first one consists of
taking into account Galilean relativity; the second one consists of a simple comparison between the leading
order correction to the speed of sound for a model with known results. We will use the first method.

For a non-relativistic (Galilean) many-body system, Luttinger liquid theory is nothing but a low-energy
description. Let us take the only possible low-energy theory, which is simply hydrodynamics. The classical
energy of the system is the sum of kinetic and internal energy which, after defining the local density ρ(x), and
local density fluctuation δρ(x) ≡ ρ(x) − ρ0, where ρ0 is the mean density, is given by

H[ρ(x)] = ∫ dx[ 1

2
mv(x)2ρ(x) + E(ρ(x))],

where v(x) is the local velocity field, and E(ρ) is the internal energy density, which follows the equation
of state. We expand the latter around its equilibrium value—the mean density ρ0—obtaining

E(ρ(x)) = E(ρ0) + E′(ρ0)δρ(x) +
1

2
E′′(x)[δρ(x)]2 +O(δρ3).

The (field-theoretical, not to be confused with the the usual isothermal compressibility, which has an
extra factor of ρ2

0
) compressibility, κ, is related to the equation of state via

κ−1 = E′′(ρ0),

and therefore at low energies

H[ρ(x)] = ∫ dx[ 1

2
mv(x)2ρ0 +

1

2κ
(δρ(x))2],

where we have dropped an irrelevant constant, and replaced ρ(x) with its equilibrium value ρ0. Let’s
now compare this with Luttinger liquid effective theory. Before proceeding, we restore physical constants (ℏ
and m). We will then use δρ(x) = −π−1∂xϕ(x) and v(x) = (ℏ/m)∂xθ(x), and obtain

H =
1

2
∫ dx[m

2uK

πℏ
v(x)2 +

πℏu

K
(δρ(x))2].

Identifying the kinetic terms in both hydrodynamic and Luttinger Hamiltonians, we find that

u

vF
=

1

K
,

valid for every Galilean sytem. The same result is obtained by matching the interacting part.

2.6.5 Connecting Luttinger liquid theory and short-range universality
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As a simple application, we consider the Lieb–Liniger model. We can infer the low-momentum behaviour of
the static structure factor (or the long-range behaviour of the pair correlation) from its high-momentum
behaviour and vice versa. To see this, take equation (1.126), which relates the high-momentum behaviour of 
S(k) to the contact C and the scattering length, as s ≡ lim

k→∞
k2(S(k) − 1) = 4C/Na. Using the adiabatic

theorem, equation (1.123), we see that C = (m/ℏ2)dE/d(−1/a), obtaining for the high-momentum limit,
after some simple changes of variables

s =
4m

ℏ2ρ

dE

dρ
=

4m

ℏ2ρ
μ,

where E = E/L is the energy density, and μ is the chemical potential. For low momenta, the structure
factor behaves as (see equation (2.204)) s̃ ≡ lim

k→0
S(k)/ ∣ k ∣= K/2πρ. Since the Lieb–Liniger model is

Galilean, we have the relation u/vF = 1/K, equation (2.213), between the speed of excitations and the
Luttinger parameter. After some tedious algebra, we obtain the relation

d

dλ
(λs) =

ℏ2

s̃2
.

As a test, let us see that the relation works for the second-order Bethe ansatz solution to the Lieb–Liniger
model. The energy per particle is given by the hard-rod expression (albeit with a < 0), equation (2.39), and
the contact by equation (2.48). We obtain, for both the right- and left-hand sides of equation (2.215),

ℏ2

s̃
2
=

8mE (0)

N

λ(λ+ 2)

(1 − λ)4
=

d

dλ
(λs),

which, even for the hard-rod model, is exact to all orders.

2.7 Liberating the independent pair approximation from the Fermi sea
Here, we are going to consider a very interesting approximation that allows for non-perturbative estimation of
the low-energy properties of one-dimensional systems using only two-body information, and without the
Bethe ansatz. The idea is based on some very old methods pertaining to what is known in nuclear physics as
the independent pair approximation (IPA) [16]. The IPA, in a nutshell, begins with a filled Fermi sea (so it
only works for fermions, of course) which, to simplify things further, we assume is composed of spin-1/2
fermions, with balanced spin populations (N↑ = N↓ = N/2). We further assume that only s-wave interactions
are relevant, implying that only opposite-spin pairs interact. We take each possible interacting pair within the
Fermi sea, which we label by their single-particle momenta k and k′, with ∣ k ∣, ∣ k′∣< kF . We let them
collide in a finite volume, but we do not allow, in the collision integrals, any occupation of other modes in the
Fermi sea except for their own single-particle modes k and k′. We then sum up all energy shifts in this finite
volume and normalize according to the number of pairs. It can be proven [16] that this procedure generates
correct energy up to second-order in perturbation theory. However, it is a non-perturbative method and can
have some validity for stronger interactions.

The IPA is a really powerful method. However, (i) it can be complicated to solve and, worse, (ii) it
produces infrared (IR) divergences in one spatial dimension! (this is due to the IR physical cutoff kF  and are
not removable in any consistent manner). Therefore, we need another method if we want to emulate the
success of the IPA in 1D. What we are going to do is remove the Fermi sea altogether, and work with two-
body subsystems (all possible pairs, like in the IPA) at finite densities. Finite size effects, instead of being
detrimental to the calculation, will be used to our advantage! This method is a priori extendable, and is one
alternative way of approaching the thermodynamic limit, from a completely few-body point of view.
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We begin by taking two non-relativistic spinless bosons (the fermionic solution will come from asymptotic
duality) on an infinitely long line. The Hamiltonian is given by

H = −
ℏ2

2m
[∂ 2

x1
+ ∂ 2

x2
]+ V (x1 − x2).

We assume that lim
x→∞

x2−εV (x) = 0 for any ε > 0 (see chapter 1), so that we can consider V (x) a short-

range interaction. We further assume that H supports no two-body bound states. We solve the two-body
problem by whichever means available, and extract the two-boson phase shifts θ(k) at relative momentum 
k = (k1 − k2)/2 which enter the scattering wave functions as

ψK,k(X,x) → eiKX sin(k ∣ x ∣ +θ(k)), k ∣ x ∣→ ∞,

where K = k1 + k2 is the total momentum, X = (x1 + x2)/2 is the centre of mass and x = x1 − x2 the
relative coordinate. If V (x) has tails, then if we place the system on a ring with length L, the two-body
eigenenergies will necessarily contain corrections due to the long-range part of the interaction. However, in
the gas phase, our target many-body system’s equation of state (and therefore the energy per particle) can only
depend on the n-body S-matrices, besides other scales in the problem (such as mass, Planck’s constant and
density), due to a theorem of Dashen, Ma and Bernstein [17]. This means that the corrections due to the tails
play no role, so we need the phase shifts. This is also in accordance with asymptotic Bethe ansatz theory [3]
for integrable models. Since we are going to drop all other information about the two-body problem, we can
immediately assume that whatever works for bosons also works for fermions, since their asymptotic wave
functions behave as

ϕK,k(X,x) → eiKX sgn(x) sin(k ∣ x ∣ +θ(k)), k ∣ x ∣→ ∞,

and the effective range expansions and analytic properties of their phase shifts are identical for bosons
and fermions (see volume 1).

Recall that, in volume 1, we investigated thoroughly how the ground state energy of a two-body system in
a finite three-dimensional cube is shifted by the presence of interactions. In one spatial dimension, the result is
far simpler. Take equation (2.218) and use periodic boundary conditions. We obtain the following quantization
conditions,

kL = nπ− 2θ(k), n ∈ Z+ − {0},

KL = 2πm− πn, m ∈ Z.

For instance, in the sector of vanishing total momentum (K = 0), the quantum number n = 2m, in
which case we obtain

k =
2πm

L
−

2θ(k)

L
, m ∈ Z+ − {0},

which is equivalent to the single-particle quantization condition.
The quantization conditions above, equations (2.220, 2.221), imply that not every momentum scale is

available from exact (numerical) diagonalization. But since we can calculate the phase shifts very efficiently
using the Lippmann–Schwinger equation, that is not a problem. We now analytically continue the values of n
to the reals, so that equation (2.220) becomes

k =
πx

L
−

2θ(k)

L
, x ∈ R.
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Since we have only two particles, we identify 2/L with the density ρ, and π/L with kF/2. Equation (2.223)
becomes

k =
kFx

2
− ρθ(k) =

kFx

2
−

kF

π
θ(k).

We define the variable y = k/kF , and the above equation simplifies to

y =
x

2
− π−1θ(kFy).

The phase shift θ is dimensionless. Therefore, it can only depend on kF  via its products with other length
scales in the problem, such as the scattering length and effective range. Given a particular interaction potential
V , these length scales are completely fixed by scattering theory. If we define the (a priori infinite) set of
length scales as

L ≡ {ℓ0, ℓ1,…}.

then the phase shift can be written as a function of these, that is

θ(kFy) = Fθ(y; kFℓ0, kFℓ1,…) = Fθ(y; s0, s1,…) ≡ Fθ(y; s),

where sj ≡ kFℓj (j = 0, 1,…) are the dimensionless coupling constants of the theory. Once the density
is fixed, the coupling constants s are fixed parameters, so equation (2.225) becomes

y =
x

2
− π−1Fθ(y; s).

Before continuing with the general theory, let us solve equation (2.228) for two very simple and
integrable models. First, let us consider the hard-rod model, for which θ(k) = −ka. The only length scale is
the hard-rod diameter a, so the only coupling constant of the theory is s0 = kFa. The function 
Fθ(y; s0) = −kFya = −ys0. Therefore, equation (2.225) is immediately solved to yield

y = y(x) =
x/2

1 − s0/π
.

For the case of the Calogero–Sutherland (CS) model, for which θ(k) = c sgn(k), with c a dimensionless
constant, we have no length scales available, so Fθ(y) = c sgn(y), so

y(x) =
x/2

1 + c sgn(x)/π
.

Now the question is, what information about the many-body system can we extract with only this two-
body information but without the full Bethe ansatz equations? To answer this, let us begin with x = 2, so that 
kF = 2π/L = πρ, and weakly perturb x → 2+ ε, ε > 0. For the hard-rod (HR) and CS models, we obtain

yHR(2 + ε) =
1 + ε/2

1 − s0/π
= yHC(2) +

ε/2

1 − s0/π
,

yCS(2 + ε) = yCS(2) +
ε/2

1 + c/π
.

Note how we have kept s0 fixed while moving the effective Fermi momentum by 2πε/L in the case of
the HR model, while in the CS model—which is scale invariant—the coupling constant naturally doesn’t
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move. In the spirit of the IPA, but in contrast with it, we emulate the finite density by having recognised 
ρ = 2/L, and by calculating y around x = 2, we are calculating the low-energy excitations near kF . This is
the case for K = 0, in which exciting a two-particle–two-hole pair we simply excite them from ±kF  to 
±kF ± q/2, such that the excitation energy corresponds with ℏω(q) = ε(2 + q/kF ) − ε(2), where

ε(x) =
ℏ2k2

F

m
y2(x).

To see how this works, let us apply it to the HR and CS models. For HRs, we have

ℏω(q) =
ℏvF

(1 − ρa)2
q +

ℏ2q2

4m(1 − ρa)2
.

From the above relation, we identify the speed of sound vHR and effective mass mHR for the excitations,
obtaining

vHR

vF
=

1

(1 − ρa)2
,

mHR

m
= (1 − ρa)2.

Because this model is extremely simple, it turns out that the speed of sound and effective mass are, in
fact, exact! This can be seen by solving the Bethe ansatz integral equation (see problem 3). For the CS model,
we should expect a similar feat. The excitation spectrum becomes

ℏω(q) = ℏvF (1 − c/π)q +
ℏ2q2

4m
,

so that the effective mass mCS = m remains unrenormalized while the speed of sound becomes

v

vF
= 1 −

c

π
.

Once more, for the particle-like excitations of this model, both the speed of sound and effective mass are
exact. This will not remain true for any other model (integrable or otherwise), but will give a good
approximation in many instances to the excitation spectrum up to and including the effective mass. To
summarize the method, now in general, the speed of sound (v) and effective mass (m * ) are obtained within
this approximation by calculating

ℏω(q) = ε(2 + q/kF ) − ε(2) = ℏvq +
ℏ2q2

4m *
+⋯.

We also note that the phenomenological expression from non-linear Luttinger liquid theory (reference
[18]), which has been proven for Bethe ansatz-solvable models, is given by

m

m *
=

1

2vK 1/2
L

d(ρv)

dρ
.

An interesting property of this theory is the following

Theorem 1
For a non-relativistic, Galilean system within the independent pair approximation without a Fermi sea, the
speed of sound and the Luttinger parameter are given by the Fermi velocity vF  and KL = 1, respectively, if
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the two-body phase shift θ(kF ) = 0, and θ(k) is continuous and differentiable at k = kF .
The proof of the above theorem is straightfoward. Note that KL = 1 does not mean the system is the Tonks–
Girardeau gas nor a free Fermi gas. It means that interactions from opposite Fermi points have vanishing
phase shifts, just as free fermions or Tonks–Girardeau bosons. In general, the theorem does not apply for non-
integrable models. And in known integrable models this only happens if the model is free fermions or Tonks–
Girardeau bosons. However, it is a very good approximation in models with realistic interactions (see
reference [19]), and coincides, of course, with constructive Luttinger liquid predicitions, although in that case
it reduces once more to free fermions. Deviations from this rule, for non-integrable models, can be attributed
to three- and higher-body interaction effects.

2.8 Trapped multicomponent systems
In this section, we will finally consider trapped multicomponent systems. We will focus on spin-1/2 fermions,
which are the simplest case, and is sufficiently illustrative for our purposes. We follow reference [20].

Consider a generic system of N  equal mass particles in an external trap, interacting via LO even-wave
interactions. Their Hamiltonian is given by

H =
N

∑
i=1

(
p2i
2m

+ U(xi))+ g
N

∑
i<j=1

δ(xi − xj).

The non-interacting Hamiltonian is not homogeneous, as it contains an external trapping potential U(x).
The single-particle eigenvectors of the non-interacting Hamiltonian are denoted ψn(x), and their associated
eigenenergies En. We shall construct many-body, spin-1/2 fermionic eigenstates of Hamiltonian (2.241) in
the limit 1/g → 0+ from Slater determinants with non-interacting orbitals ψn(xi). The stationary Schrödinger
equation with hard core interactions has solutions which, for each permutation sector (say, 
P1 = {x1 < x2 < … < xN ) correspond to Slater determinants. That is, regardless of symmetry and
statistics, the eigenstates take the form for 1/g = 0

ψP (x1,… ,xN) ∝ A(ψn1(x1)…ψnN
(xN)),

in whichever permutation sector P . Above, A is the antisymmetrization operator. As an extremely
simple example, take two bosons. In the sector x1 < x2, we have 
ψ(x1,x2) = ψn1(x1)ψn2(x2) − ψn2(x1)ψn1(x2). In the sector x1 > x2, we have 
ψ(x1,x2) = λ[ψn1(x1)ψn2(x2) − ψn2(x1)ψn1(x2)]. Now, take x < y, and because of bosonic symmetry, 
ψ(x, y) = ψ(y,x), which implies that λ = −1. That is, in any sector, the bosonic eigenstates are given by

ψ(x1,x2) = A[ψn1ψn2 ]Θ[x2 − x1] −A[ψn1ψn2 ]Θ(x1 − x2) ∝ sgn(x1 − x2)A[ψn1ψn2 ].

The last term is the usual form in which we have been writing Girardeau’s wave functions. Now that this
is clear, we can write the general form for an N-body wave function regardless of symmetry

ψ(x1,x2,… ,xN) = ∑
P

λPA[ψn1
ψn2

…ψnN
]χ(x ∈ P),

where the sum is over all possible permutations, λP  are constant coefficients (with signs that depend on
statistics and amplitudes to be calculated), and χ(x ∈ P) is a characteristic function that vanishes unless 
x ∈ P , in which case χ = 1.

Let us consider spin-1/2 fermions. The wave function, for finite g, to the Lieb–Liniger boundary condition

1
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1

2g
[(∂xi

ψ− ∂xj
ψ)

xij→0+
− (∂xi

ψ− ∂xj
ψ)

xij→0−
] = ψ(xi = xj).

Since both the left- and right-hand-sides vanish as g → 0, we need a device to do perturbation theory at
the limit g → 0. The simplest way is to use the Hellmann–Feynman theorem. If ψ is an eigenstate with energy 
E(g), with g finite, then

Q ≡ − lim
g→∞

∂E

∂g−1
= lim

g→∞
g2

N

∑
i<j=1

∫
N

∏
k=1

dxk ∣ ψ ∣2 δ(xi − xj)

∣∣ ψ ∣∣2
.

Using the boundary conditions (2.245) in the equation above, we obtain

Q =

N

∑
i<j=1

∫
N

∏
k=1

dxkδ(xi − xj)∣(∂xi
ψ− ∂xj

ψ)
xij→0+

− (∂xi
ψ− ∂xj

ψ)
xij→0−

∣
2

∣∣ ψ ∣∣2

The integral above is divided into sectors as

Q =

N

∑
i<j=1

N !

∑
k=1

∫
Γk

∫
N

∏
i=1

dxiδ(xi − xj)∣(∂xi
ψ− ∂xj

ψ)
xij→0+

− (∂xi
ψ− ∂xj

ψ)
xij→0−

∣
2

∣∣ ψ ∣∣2
,

where Γk are permutation sectors. Using the above relation we obtain, after straightforward algebra,

Q =

∑
k,p

(λk − λp)
2αkp

∑
k

λ2
k

.

Above, k and p run over the number of independent coefficients. In the case of spin-1/2, this number is 
M = N !/(N↑!N↓!). The relevant couplings, αkp, in equation (2.249), are given by

αkp = ∫
Γk

dx1 … dxNδ(xi − xj)∣∂xi
ψA∣

2,

where ψA = A[ψn1ψn2 …ψnN
]. A very powerful algorithm (called CONAN) for obtaining these

coefficients and solving the problem is given in reference [21].

Problems
1. Consider the interaction in equation (2.79) for two fermions. Show that if the interaction strength is made

∝ b−(2+ε), for ε > 0, an appropriate choice of ε allows for fine tuning of the odd-wave scattering length
to any target value as b approaches 0, without arriving at the exact limit.

2. Show that the Gaudin’s magnet Hamiltonian, equation (2.97), can be recast, except for a constant offset,
as equation (2.98).

3. Obtain the speed of sound for the HR model by solving the ground state Bethe ansatz equation. (Hint:
calculate the ground-state chemical potential and use mv2 = ρ∂ρμ.)

4. Calculate the ground state energy of the attractive Lieb–Liniger model. (Hint: it is a simple counting
problem.)
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Chapter 3

Virial expansions

Low-temperature thermodynamics in strongly interacting systems is quite complicated. This
is true even for classical statistical mechanics, except in simple systems and extremely close
to zero temperature, where the system simply stays in the minimal potential energy spatial
configuration. For high temperatures, there exists a method (as old as or older than statistical
mechanics itself) called the virial expansion. This allows for the calculation of a series
expansion for small fugacities. In the classical case, the expansion is somewhat simple and,
in fact, it is nowadays of little use due to the power of current computers: we can solve huge,
strongly interacting, classical systems exactly at any temperature and under arbitrary
external conditions. In the quantum case, this is not so easy. While quantum Monte Carlo
has gone a long way, and density-matrix-renormalization group (DMRG) calculations (in
one spatial dimension) are essentially exact and efficient, the former still suffers from the
same old sign problem, and DMRG is restricted to low-entanglement (low temperatures) and
low dimensionality. Therefore, quantum virial expansions can be very powerful for, at least,
predicting some mid-to-high-temperature properties regardless of whether the system is
weakly or strongly interacting. Although we shall not use them, deriving the leading order
cluster expansions for classical systems is useful and inspiring for the quantum case, so we
shall begin with them.

3.1 Classical virial expansion
We consider a three-dimensional system of N identical, classical, non-relativistic point
particles interacting via pairwise potentials, with Hamiltonian

H(p, q) =
N

∑
i=1

p2
i

2m
+

N

∑
i<j=1

V (ri − rj).

We are interested in calculating a low-fugacity expansion for the canonical partition function
Z(β,N , V), with β = 1/kBT  the inverse temperature and V the volume. The partition
function is defined, as usual, via

Z(β,N ,V ) =
1

N !
∫

R3N

N

∏
i=1

( dpi

2πℏ
)∫

VN

N

∏
j=1

drje
−βH(p,q).
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For a non-relativistic, Galilean system, we get rid of the momentum dependence by
integrating over all momenta (it is a Gaussian integral). The partition function becomes

Z(β,N , V) =
1

N !
∫

VN

N

∏
i=1

( dri

λ3
T

)e
−β

N

∑
j<k=1

V (ri−rj)

.

Above, λT = (2πℏ2/mkBT )
1/2 is the thermal wavelength. Note how Z in equation (3.3) is

impossible to calculate exactly by means of analytic methods. This is where the virial
expansion comes in.

To see how it works, let us assume that the temperature is high when compared with
other typical energy scales. Mathematically, this is the limit β → 0+. Then, exp(−βV ) is
typically near 1, and therefore λ = exp(−βV ) − 1 is a small parameter (∣ λ ∣≪ 1). To be
specific, let us define

λ(ri − rj) = λ(rij) = e−βV (ri−rj) − 1.

The canonical partition function becomes

Z(β,N , V) =
1

N !λ3N
T

∫
VN

dr1 ⋯ drN

N

∏
j<k=1

[1 + λ(rij)].

The product above can be expanded as sums containing two-, three- and n-body terms (
3 < n ⩽ N). Since we are only interested in illustrating the method, and the quantum case
becomes very complicated for three- and higher-body terms, we cut the expansion as

Z(β,N , V) ≈ Z (2)(β,N , V) ≡
1

N !λ3N
T

∫
VN

dr1 ⋯ drN[1 +
N

∑
i<j=1

λ(rij)].

Since each term above depends only on two positions, equation (3.6) is simplified to

Z (2)(β,N , V) =
1

N !λ3N
T

[V
N +

N(N − 1)

2
V

N−2
I(β, V)],

where we have defined the integral

I(β, V) = ∫
V

dr1 ∫
V

dr2λ(r12).

Since we are interested in the thermodynamic limit, we can change variables in the integral
to centre of mass and relative coordinates, obtaining
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I(β, V) → ∫
V

dR∫
R3

drλ(r) = V ∫
R3

drλ(r).

For typical interactions, the above integral is convergent. In summary, the second-order
(including up to two-particle interactions) partition function is given by

Z (2)(β,N , V) =
VN

N !λ3N
T

[1 +
N(N − 1)

2V
∫

R3

drλ(r)].

We further define the standard virial coefficients

b1 =
1

V
∫

V

dr1 = 1,

b2 =
1

2!λ3
T

V
I(β, V) =

1

2λ3
T

∫
R3

drλ(r).

Now, to obtain an approximation to the pressure, we need to be careful regarding which
quantity we expand. The second-order pressure is given by

P (2)(T , v) = kBT(
∂ ln Z (2)

∂V
)

N ,T

,

where v = V /N = 1/ρ is the reduced volume (or inverse density). Expanding for
small 1/v (low-density), we obtain the desired expression

P (2)v

kBT
= 1 −

λ3
T b2

v
.

 
Let us now obtain the second virial coefficient for some simple models. The three-

dimensional hard-sphere model with diameter a is especially easy to calculate, since 
λ(r) = −Θ(a− ∣ r ∣). The second virial coefficient is given by

b2 = −
1

2λ3
T

∫
R3

drΘ(a− ∣ r ∣) = −
4π

2λ3
T

∫
a

0
drr2 = −

2πa3

3λ3
T

.

If we do this instead in one dimension (Tonks gas), we only need to change v → N/L
and λ3

T → λT , obtaining

b2 = −
1

2λT
∫

a

−a

dx = −
a

λT
.
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In this case, we can compare with the exact results, since the Tonks gas is exactly solvable.
To extract the pressure, we solve the thermodynamic Bethe ansatz (see chapter 2). The
canonical partition function has the form (see problem 1)

Z =
LN

λN
T

[(1 − ρa)]N .

This gives for the pressure

Pv

kBT
= 1 −

a/v

1 − a/v
⟹

P (2)v

kBT
= 1 −

a

v
,

which gives b2 = −a/λT , as should be.

3.2 Quantum virial expansion
We now move on to the more interesting quantum statistical mechanical problem. In this
case, we will make use of scattering theory and energy shifts in finite volumes, explained at
length in volume 1. The canonical partition function for quantum systems is given by

Z(β,N , V) = Tr(e−βH),

where H is now a Hamiltonian operator. For non-relativistic systems with pairwise
interactions we simply take the quantised form of equation (3.1).

Our goal is now to evaluate, approximately, the trace of the thermal density matrix 
exp(−βH). To do this, we place an N-body quantum system in a finite volume V, and
define a complete orthonormal set of wave functions in the Hilbert space, {∣ ψα ⟩}α

, where 
α are indices that can be mapped to the natural numbers, since the Hilbert space is separable
(by the principles of quantum mechanics!). The trace can then be evaluated as

Z(β,N , V) = ∫
VN

(
N

∏
i=1

dri)∑
α

ψ
*
α(r1, … , rN)e−βHψα(r1, … , rN).

 
Following Huang [1], for different particle numbers N = 1, 2, …, we define the

following function

WN(r1, … , rN) = N !λ3N
T ∑

α

ψ
*
α(r1, … , rN)e−βHψα(r1, … , rN),

so that N !λ3N
T Z = ∫

VN

WN . This fixes the normalization so that W1(r) = 1 as 

V → ∞. To see this, recall that if Ô is an operator and ∣ ψ⟩  is an eigenstate, 
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Ô ∣ ψ⟩ = o ∣ ψ⟩ , then f(Ô) ∣ ψ⟩ = f(o) ∣ ψ⟩ . Therefore, since the one-body Hamiltonian is
just H = p2

1/2m, if we choose the one-body orthonormal set with periodic boundary
conditions in a cube with volume V as

ψn(r) =
1

√V
eikn⋅r,

with kn = 2πn/V 1/3 we obtain

W1(r) =
1

V
λ3
T ∑

n∈Z3

exp(−βℏ2 ∣ kn ∣2 /2m) → λ3
T ∫

R3

dk

(2π)3
e−βℏ2∣k∣2/2m = 1,

where the continuum limit has been taken (using, for instance, the Poisson summation
formula). We now consider the two-body function W2(r1, … , rN). The most convenient
basis to calculate W2 is the eigenfunction basis of the Hamiltonian in a finite volume. Just as
in the classical case, we can eliminate the centre-of-mass, since the two-body eigenstates
have the form

ψK,k(R, r) =
eiK⋅R

√V
ψk(r),

for scattering states (i.e., for states that becomes scattering wave functions in the limit 
V → ∞), and

ψK,n(R, r) =
eiK⋅R

√V
ψn(r),

for two-body bound states (i.e., states that remain normalizable in the relative
coordinate as V → ∞). We immediately see that W2 can be written as

W2(R, r) = 2λ6
T(

1

V
∑

K

e−βℏ2K2/4m)[∑
n

e−βEn ∣ ψn(r) ∣2 +∑
k

e−βε(k) ∣ ψk(r) ∣2].

Above, ε(k) is the shifted energy of the scattering state (labelled by its non-interacting
limit). The sum over total momenta is easily evaluated by taking the continuum limit,

( 1

V
∑

K

e−βℏ2K2/4m) → ∫
∞

0

dK

(2π)3
4πK 2e−βℏ2K 2/4m =

2√2

λ3
T

.

The sum over the bound states, in general, cannot be performed analytically, but since 
W2(R, r) does not depend on R, and ψn is normalized, the dependence on the bound state
wave function disappears. The same applies for the scattering wave functions. We now



(3.28
)

(3.29
)

(3.30
)

(3.31
)

(3.32
)

handle the shifted energies of the scattering states. Since we are interested in the large-
volume limit, the actual boundary conditions for the scattering states are unimportant. If the
two-body interaction is spherically symmetric, the simplest way to go is to calculate energy
shifts with open boundary conditions on the surface of a sphere with radius R0, such that 
4πR3

0/3 = V. If we do this, the quantization of k will not be ‘Cartesian’ but spherical. Using
spherical coordinates for the scattering states, we have

ψq,ℓ,m(r) = uqℓ(r)Yℓm(Ω),

and the boundary condition reduces to uqℓ(R0) = 0. This condition on partial-wave
scattering states implies

sin(qR0 + πℓ/2 + θℓ(q)) = 0 ⟹ qR0 = πp −
π

2
ℓ − θℓ(q),

where p ∈ Z+ ∪ {0} and θℓ(k) is the partial wave phase shift. Since the non-
interacting k-label is given by equation (3.29) with θℓ ≡ 0, and for V → ∞ we have q → k,
we can use for the q-quantization

q ≈ k −
θℓ(k)

R0
.

The sum ∑
k

fℓ(k) is to be replaced as

∑
k

fℓ(k) →
∞

∑
ℓ=0

(2ℓ + 1)∫
∞

0

dk

π
R0fℓ(k).

We change variables as in equation (3.30), so that equation (3.31) becomes

∑
k

fℓ(k) →
∞

∑
ℓ=0

(2ℓ + 1)∫
∞

0
dq(1 +

1

R0

∂θℓ

∂q
) f̃ ℓ(q),

where f̃ ℓ(q) = fℓ(q − θℓ(q)/R0). The reason why this is a helpful change of variables
is because the function we are interested in is f̃ ℓ(q) = exp(−βℏ2q2/m), so that the integral
is more conveniently expressed by integrating over q instead of k.

We now calculate the function Z(β,N = 2, V), which is given by
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)
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)
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)

(3.36
)

(3.37
)

(3.38
)

We define the non-interacting two-body partition function as Z0(β, 2,V ), so that
equation (3.33) can be rewritten as

Z − Z0 =
2√2

λ3
T

V[∑
n

e−βEn +
∞

∑
ℓ=0

(2ℓ + 1)∫
∞

0

dq

π

∂θℓ(q)

∂q
e−βℏ2q2/m].

Note that equation (3.34) is identical to the one derived by Huang [1]. However, the
method followed there uses the density of states, and we find the method of changing the
variables (which is exactly equivalent) to be conceptually simpler.

Let us see how to calculate the pressure, by using the grand-canonical ensemble.
Denoting z = eβμ, where μ is the chemical potential, the grand-canonical partition function
is given by

X(β,μ, V) = Tr(e−β(H−μN̂)) =
∞

∑
N=0

zNZ(β,N , V).

Hence, to second order in the virial expansion, we have

X
(2)(β,μ, V) = 1 + zZ(β, 1, V) + z2Z(β, 2, V).

From our previous analysis, W1(r) = 1, so Z(β, 1, V) = Vλ−3
T

. For two particles, we
have equation (3.34). Rearranging the terms we obtained as

P (2)V

kBT
= Z(β, 1, V)∑

k>0

zkbk =
V

λ3
T

∑
k>0

zkbk,

where bk are the so-called virial coefficients, we finally get

b1 = 1,

Z(β, 2, V) =
1

2λ6
T

∫
V×V

dr1dr2W2(r1, r2)

=
1

2λ6
T

4√2λ3
T

V ∫ dr[∑
n

e−βEn ∣ ψn(r) ∣2 +∑
k

e−βε(k) ∣ ψk(r) ∣2]

=
2√2

λ3
T

V[∑
n

e−βEn +∑
k

e−βε(k)]

=
2√2

λ3
T

V[∑
n

e−βEn +
∞

∑
ℓ=0

(2ℓ + 1)∫
∞

0

dq

π
(R0 +

∂θℓ(q)

∂q
)e−βℏ2q2/m].
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)

b2 = Z(β, 2, V) −
1

2
Z(β, 1, V)2 = Z(β, 2, V) − ( 1

λ3
T

)
2

.

Problems
1. Consider the one-dimensional hard-rod Bose or spinless Fermi gas (they are

thermodynamically equivalent). Since it is exactly solvable, we can compare the exact
solution to the virial expansion. The differences between three and one dimension are
the following: (i) instead of λ3

T
 we have λT ; (ii) instead of angular momentum ℓ we

have parity (even for bosons, odd for fermions); (iii) the boundary condition is replaced
with sin(kL/2 + θ±(k)) = 0, so we replace R0 with L/2; and (iv) the integral over
total momentum changes as

1

L
∑
K

e−βℏ2K 2/4m → ∫
∞

−∞

dK

2π
e−βℏ2K 2/4m = √

m

πβℏ2
=

√2

λT

.

Taking all of this in account, we have b1 = 1, and we obtain b2 from Z(β, 2,L), as

Z =
√2

λT

L[∑
n

e−βEn + ∫
∞

0

dq

π
( L

2
+

∂θ±(q)

∂q
)].

a. Obtain the second virial coefficient for the hard-rod quantum gas of bosons or
spinless fermions.

b. Solve the thermodynamic Bethe ansatz exactly and show that the resulting virial
expansion agrees to second order.

2. Consider the Lieb–Liniger model with scattering length a < 0 and density ρ.
a. Obtain the second-order virial expansion for the pressure.
b. Compare the resulting expression with the result for hard rods of diameter a > 0

and density ρ.
3. Consider a system of three-dimensional spinless fermions interacting via a p-wave

interaction with phase shifts θℓ=1(k). Assume there are no bound states.
a. Obtain a general expression for the second-order virial expansion for the pressure.
b. Identify the dilute limit, using the effective range expansion for the p-wave phase

shifts, and obtain an approximate virial expansion.

Reference
[1] Huang K 1963 Statistical Mechanics (New York: Wiley)
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Chapter 4

Few-body systems embedded in a many-body medium

So far, we have used a number of powerful few-body methods to obtain non-perturbative
physics, either approximately, effectively or exactly, in many-body quantum systems. In this
chapter, we treat what is commonly known as ‘polaron problems’. These consist of a many-
body background, which can be non-interacting, weakly interacting or strongly interacting, and
one or two particles of a different species than the majority one which is thermodynamically
large. Of course, the minority particles interact with the many-body background. The effect of
the medium on the minority particles is to ‘dress’ them, due to some polarization. These are
typically called ‘polarons’. Another name they may come by is impurities, which can be either
itinerant (mobile) or static (such as defects and vacancies). Most of the time, we shall use the
convention of calling anything that moves ‘polaron’, and every static particle ‘impurity’. We
begin with the infinitely massive case of minority particles, that is, impurities, and then move on
to study the cases of a polaron embedded in a Fermi sea and, finally, the effective interactions
between heavy polarons in a Fermi sea of light fermions.

4.1 Impurities
A static, non-magnetic impurity interacting with an otherwise non-interacting Fermi gas can be
modelled as a static one-particle interaction potential. That is, the many-body Hamiltonian is
simply

H =
N

∑
i=1

p2
i

2m
+

N

∑
i=1

U(ri),

where U(r) is the impurity–fermion interaction. Typically, this will be short-ranged, and
therefore will admit a number (M) of bound states and, of course, a continuum of scattering
states, in the infinite volume limit. For simplicity, and without loss of generality, we will
consider the mobile particles to be spinless fermions. If we place the system in a sphere of
radius R0 with open boundary conditions on the surface, the many-body problem reduces to a
one-body problem. In the thermodynamic limit, the effect of the impurity on the energy of the
system is of O(1) (not extensive), since single-particle energy shifts are of O(V −1) (see volume
1), and adding up N of them results in a total shift ∝ N/V = O(1). For unitary s-wave
interactions, with divergent scattering lengths, this is not so clear a priori, since energy shifts in
the ground state within effective field theory give a single-particle energy shift of O(V −2/3),
and therefore a proper calculation is necessary to establish the order of the correction. Here, we
study these shifts by deriving Fumi’s theorem [1].
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(4.4)

(4.5)

(4.6)

(4.7)

(4.8)

In the many-body problem, the ground state corresponds to a filled Fermi sea, with orbitals
given by the interacting single-particle orbitals. If M bound states exist, with bound state

energies E1,E2, … ,EM , then the ground state energy is given by 
N

∑
i=1

Ei if N ⩽ M , which is

typically of O(1) (for example, the one-dimensional −1/ ∣ x ∣ interaction), but not necessarily,
if 1/M = 0. The rest of the contribution to the ground state energy will come from scattering
states. If the potential is spherically symmetric, then the boundary condition for the reduced
radial wave functions is simply

ukℓ(R0) = 0,

which implies (see equation (3.29))

k =
πp

R0
−

π

2R0
ℓ −

θℓ(k)

R0
,

where p = 1, 2, …. Just as we did for the virial expansion in chapter 3, we take advantage of
the fact that k → πp/R0 as R0 → ∞, so we replace equation (4.3) with

k ≈
πp

R0
−

π

2R0
ℓ −

θℓ(πp/R0)

R0
.

The single-particle energies are given by

εp,ℓ =
ℏ2k2

2m
,

and the ground state energy E0 becomes

E0 =
ℏ2

2m
∑
p

∑
ℓ

(2ℓ + 1)[k(p, ℓ)2].

We are only interested in the energy shift in the thermodynamic limit, that is, 
δE0 = E0 − (ℏ2/2m)∑

p,ℓ
(2ℓ + 1)2(πp/R0 − πℓ/(2R0))θℓ(πp/R0)/R0, which becomes

δE0 = −
ℏ2

mπ
∫

kF

0
dkk∑

ℓ

(2ℓ + 1)θℓ(k).

If, for instance, interaction is predominantly s-wave, we may approximate the energy shift as

δE0 ≈ −
ℏ2

mπ
∫

kF

0
dkkθ0(k).

It is left as a problem to the reader to show that, in the unitary limit, the above relation remains
valid and is of O(1).
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)
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)
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)
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)

4.2 Fermionic polarons
We consider now a spin-polarized many-fermion system, say with spin-up. The fermions do not
interact among themselves. On top of them, we consider a spin-down fermion, with the same
mass, which interacts with each of the spin-up fermions via a pairwise potential. For simplicity,
we shall assume that the interaction is low-energy effective field theory (LO-EFT) s-wave. We
write down the bare Hamiltonian (with bare coupling constant g0) of the system in the second
quantization, which is the simplest way to treat the problem,

H = ∑
k,σ

ε(k)c
†
kσckσ +

g0

V
∑
kk′q

c
†
k+q↑c

†
k′−q↓ck′↓ck↑.

Above ckσ annihilates a spin-σ fermion, and ε(k) = ℏ2k2/2m is the kinetic energy dispersion.
We assume we have a many-body system of non-interacting spin-up fermions, and one spin-

down fermion. Since for one impurity the statistics does not matter (it may as well be a boson
but with the same mass as the fermions), we rename the operators as ck↑ ≡ ck and ck↓ ≡ ak. To
treat this problem, we use the variational method, although we must be careful because the
Hamiltonian is non-Hermitian when acting on wave functions outside its Hilbert space, and
every state that is not an exact eigenstate (or a combination thereof) is not in the Hilbert space.
Recall that we saw this issue with the Hellmann–Feynman theorem in chapter 2 for this exact
Hamiltonian. Therefore, it is not guaranteed that any variational calculation will give an upper
bound to the ground state energy. What we can guarantee is that the ground state energy will be
exact to whichever order in perturbation theory the trial wave function can reproduce. After this
warning, we consider the following trial wave function, known as Chevy’s ansatz [2]

∣ ψ⟩ = [√Z0 + ∑
k∉F ,q∈F

ϕk,qc
†
k
cqa

†
q−k

] ∣ F⟩,

where ∣ F⟩ ≡ ∣ F⟩↑ ⊗ a
†
0∣ 0⟩↓

 is the non-interacting ground state. The right-expectation
value of the Hamiltonian is given by

⟨H⟩ ≡ ⟨ψ ∣ Hψ⟩ ≡ ⟨H0⟩+ ⟨V ⟩.

By working out the corresponding contractions, we obtain

⟨H0⟩ = ∑
k∉F ,q∈F

εkq ∣ ϕkq ∣2,

⟨V ⟩ =
g0

V
[∑

q∈F

Z0 + ∑
k,k′∉F ,q∈F

ϕ
*
k,qϕk′q + ∑

k∉F ,q,q′∈F

ϕ
*
kq′ϕkq

+ ∑
k∉F ,q∈F

((√Z0)
*
ϕkq + √Z0ϕ

*
kq)],
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)
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)
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)
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)
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)
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)

where εkq ≡ ε(k) + ε(q − k) − ε(q). The functional we should minimize, fixing the
normalization of the trial wave function, is given by

F[√Z0, (√Z0)
*
,ϕ,ϕ*] = ⟨H⟩− E ∣∣ ψ ∣∣2,

where E will be the ground state energy and plays the role here of a Lagrange multiplier.
Extremizing F  with respect to (√Z0)

* and ϕ*, the problem reduces to the following set of
equations

εkqϕkq +
g0

V
[√Z0 + ∑

k′∉F

ϕk′q] = Eϕkq,

g0

V
∑
q∈F

[√Z0 + ∑
k′∉F

ϕk′q] = E√Z0.

Above, we have defined E = E − E0, where E0 is the ground state energy of the non-
interacting system. Further defining f(q) = √Z0 + ∑

k′∉F
ϕk′q, we find

f(q) =
√Z0

1 −
g0

V
∑
k∉F

1

E − εkq

,

which is easy to eliminate in favour of a single non-linear equation for the ground state
variational energy

E =
1

V
∑
q∈F

[ 1

g0
−

1

V
∑
k∉F

1

E − εkq

]
−1

→ ∫
q∈F

dq

(2π)3
[ 1

g0
− ∫

k∉F

dk

(2π)3

1

E − εkq

]
−1

,

In the last line above we have taken the infinite volume limit. Equation (4.18) can be easily
solved numerically. Recall, however, that regularization–renormalization must be performed.
The LO-EFT s-wave bare coupling g0 as a function of the spherical cutoff Λ is given by (see
volume 1)

1

g0
=

m

4πℏ2a
−

mΛ

2π2ℏ2
.

There is a similar associated problem when kFa ≲ 1, which is that of the molecule.
Clearly, when a → 0+, there is a deeply bound state between the impurity and a fermion, so that
the ground state energy approaches the bound-state energy in vacuum of the pair plus the energy
of the Fermi sea with one less spin-up fermion,
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)
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)

E → −
ℏ2k2

F

2m
−

ℏ2

ma2
, a → 0+.

The ground state energy for the polaron, from Chevy’s trial wave function is plotted in
figure 4.1, where we clearly see that the molecular energy must cross the polaron’s energy and
the polaron is not always the ground state.

Figure 4.1. Energy with respect to the vacuum two-body energy 
δE = (E + ℏ2/ma2)/EF  as a function of 1/kFa for Chevy’s polaron ansatz.

4.3 Casimir interaction in mixtures of heavy and light fermions
We now consider a mixture of majority fermions with mass m much lighter than the
corresponding fermionic impurities, with mass M (M/m ≫ 1). In this case, instead of a single
(polaron) impurity atom, we will deal with a multiple of them. We consider s-wave LO-EFT
interactions between majority and minority fermions with scattering length a, and regard the
light–light and heavy–heavy direct interactions as negligible. We follow reference [3].

Since the impurities are heavy, we will employ the Born–Oppenheimer approximation to
establish their emergent effective interactions. We consider two heavy fermions and one light
fermion with coordinates r1, r2 and y, respectively. The heavy fermions are fixed, and we
calculate their energy shifts due to the presence of the light fermion, as a function of their
interatomic distance. The Schrödinger equation for the light atom (in a scattering state) has the
form

−
ℏ2∇2

y

2m
ψ(y; r1, r2) =

ℏ2k2

2m
ψ(y; r1, r2),

with the Bethe–Peierls boundary condition appropriate for LO interactions,

ψ(y; r1, r2) ∝
1

∣ ri − y ∣
−

1

a
, y → ri (i = 1, 2).



(4.22
)

(4.23
)

(4.24
)
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)
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)
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)

(4.28
)

There are two solutions to the Schrödinger equation, with parities P = ±1, given by

ψ± =
sin(k ∣ r1 − y ∣ +θ±(r12))

∣ r1 − y ∣
±

sin(k ∣ r2 − y ∣ +θ±(r12))

∣ r2 − y ∣
.

As y → r1, for instance, the above state becomes

ψ± ∝
1

∣ r1 − y ∣
±

sin(kr12 + θ±(r12))

r12 sin θ±(r12)
.

Using the Bethe–Peierls boundary condition, equation (4.22), we find

tan θ±(r12) = −
kr12 ± sin(kr12)

r12/a ± cos(kr12)
.

To extract the energy shift—and therefore the effective interaction—for two impurities, we
place the system in a sphere of radius R with open boundary conditions at its surface. Without
loss of generality, we assume R ≫ r12, place the impurities at r1 = r12/2, r2 = −r12/2, and
apply the open boundary condition at a point R colinear with r1 and r2. Then, for positive
parity states, we have

sin(kR + θ+(r12)) = 0 ⟹ kR + θ+(r12) = nπ, n = 1, 2, … .

For negative parity states, the condition becomes instead

cos(kR + θ−(r12)) = 0 ⟹ kR + θ−(r12) = (n −
1

2
)π, n = 1, 2, … .

We have now everything in place to calculate the total energy shift for two impurities
given a light fermion Fermi gas at finite density, with Fermi momentum kF . We need to
calculate the ground state energy in the presence of the two impurities, which we already did in
section 4.1 with Fumi’s theorem. In this case, the interatomic distance-dependent energy shift is
given by (with obvious notation)

where E0 is the non-interacting ground state energy of the majority Fermi gas, we have
used Fumi’s theorem, equation (4.8). Note that the LO-EFT interaction does support bound
states (see problem 5), but we shall neglect them here for simplicity.

Let us study a simple example, namely the weakly interacting limit a → 0−. The phase
shifts, equation (4.25), take the simple form

E(r12) = ∑
k+

ℏ2k2
+

2m
+∑

k−

ℏ2k2
−

2m
− E0

= −
ℏ2

mπ
∫

kF

0
dkk[θ+(k, r12) + θ−(k, r12)],
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)
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)
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)

(4.33
)
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)

tan θ± ≈ −ka ±
sin(kr12)a

r12
.

If kFa → 0−, we may also substitute tan θ± ≈ θ±, so the energy shift, equation (4.28) is
easily calculated as

E(r12) ≈
2

3π

ℏ2k2
F

m
kFa,

which is independent of distance. This must be the case, since a single heavy fermion does
give an energy shift μh, so that at large distances

E(r12) → 2μh, r12 → ∞.

This means that the interaction potential must be shifted as

V (r12) ≡ E(r12) − 2μh.

Now that this has been clarified, let us improve the calculation of the interaction potential
in the limit a → 0−. In this limit, the phase shifts are expanded as

θ±(r12) = −
a

r12
[kr12 ± sin(kr12)] ±

a2

r2
12

(kr12 ± sin(kr12)) cos(kr12) + O(a3).

Introducing the above expression into Fumi’s theorem, equation (4.28), and subtracting
twice the chemical potential, we obtain

V (r12)

(kFa)2
=

ℏ2k2
F

2m

2kFr12 cos(2kFr12) − sin(2kFr12)

2π(kFr12)4
+ O(kFa).

Note that the above interaction oscillates (it is of the RKKY type), and therefore the
oscillations reduce the range of the effective power law tails from r−3 to to r−5 (see section
1.1). This means that the two-body scattering length (for heavy–heavy collisions) remains well
defined. In figure 4.2, we plot the interaction in the limit a → 0−, where the oscillations and the
power law tails are clearly visible.
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Figure 4.2. Effective interaction v(r12) = V (r12)/(EF (kFa)2) between two heavy
impurities in the limit a → 0−.

Problems
1. Consider a non-interacting Bose gas in its ground state, interacting with a fixed impurity.

Derive the equivalent of Fumi’s theorem in this scenario, and apply it to the case of s-
waves.

a. 2. Consider a spinless Fermi gas in its ground state interacting with a fixed impurity.
Assume the impurity–fermion interaction to be purely s-wave, and LO EFT, with
infinite scattering length 1/a = 0−. Show that Fumi’s theorem gives a finite O(1)
energy shift.

b. What happens if, instead of a Fermi gas, we consider a Bose gas?.
3. Consider a spin-polarized Fermi gas interacting via an s-wave LO EFT (scattering length

a) with a mobile impurity with the same mass as the majority particles. Using Chevy’s
ansatz, obtain the expansion for the ground-state energy shift near the unitary limit. That is,
if E(0) is the shift for 1/a = 0, obtain

E(a) = E(0) +
c1

a
+

c2

a
+ O(a−3).

4. Adapt Tan’s relations to Fumi’s theorem with LO EFT s-wave interactions, and show
by an explicit calculation that the momentum distribution acquires k−4 tails.

5. The LO EFT s-wave interaction may support bound states. Calculate the form of the
bound-state contribution to the effective interaction between heavy polarons immersed in a
Fermi sea of lighter majority particles.

6. Consider a chiral one-dimensional non-interacting Fermi gas, with linear dispersion 
ε(k) = ℏvk. Assume it interacts with a fixed impurity via a potential of the form V (x).

a. For V (x) a regular interaction with V (x) → 0 as x → ±∞, obtain the equivalent of
Fumi’s theorem.



b. Do the same for V (x) = gδ(x), identifying any possible subtleties due to
regularization and renormalization.
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Chapter 5

Strong microscopic interactions—weakly-coupled
many-body systems

Throughout the book, we have encountered many examples for which, even though
interactions appear strong (e.g. contain hard cores, or long-range tails), the system
may behave as if it were weakly interacting or, more generally, we have been
capable of establishing some non-perturbative effects without ever needing to solve
a strongly interacting many-body system, and only working out the few-body
problem, which is far more manageable. In this chapter, we put some of these
fortunate issues into context, and study a few simple examples for which many-
body physics with strong microscopic interactions can be quantitatively and
qualitatively described by weakly coupled theories. We begin with a very well-
known lattice model with strong interactions, and show that in some instances it can
be treated as dilute continuum Bose gas. We then study a familiar one-dimensional
example directly in the continuum.

5.1 Three-dimensional spin model in the dilute limit
We consider a cubic lattice in three spatial dimensions, with lattice spacing d. On
each point of the lattice, we place a spin, either ↑ or ↓ (spin-1/2). The coupling
between spins on the lattice only occurs between nearest neighbours. The
Hamiltonian is given by

H = −J∑
⟨i,j⟩

Si ⋅ Sj + V ∑
⟨i,j⟩

S z
i S

z
j + λ∑

i

S z
i .

Above, i and j are in Z3, J , V  and λ are parameters, and Si = (Sx
i

,S y

i
,S z

i
) are

spin-1/2 operators. Hamiltonian (5.1) is in general very difficult to handle
analytically. Before looking at cases in which this is possible, let us develop
equation (5.1) by writing it in terms of the Pauli matrices →

σ i and, more



(5.2)

(5.3)

(5.4)

(5.5)

(5.6)

(5.7)

conveniently, in terms of the ladder operators σ±
i

 and the z-component of the spin 
σz

i
. We define

t ≡
Jℏ

2

8
,

v ≡
ℏ2V

4
− 2t,

γ ≡
ℏλ

2
,

and the Hamiltonian becomes

H = −t∑
⟨i,j⟩

[σ+
i σ

−
j + σ+

j σ
−
i ]+ v∑

⟨i,j⟩

σz
iσ

z
j + γ∑

i

σz
i .

Since σz = ∑
i

σz
i
 is conserved, we work in subspaces with fixed magnetization. As

a reference state, we consider the vacuum ∣ 0⟩ ≡∣ … ↓↓ … ↓ …⟩, that is, the
minimal spin projection (totally ferromagnetic state). It is an eigenstate of the
Hamiltonian, with eigenenergy E0 given by (as the number of sites L3

s → ∞)

E0

L3
s

= 6v − γ.

We shall measure every energy with E0 as a reference. The simplest case we can
consider consists of placing v ≡ 0, and γ = +6t. This ensures that the single-
magnon ground state energy vanishes. The single-magnon ground state is simply

∣ ψ1⟩ = ∑
i

σ+
i

∣ 0⟩ ≡ ∑
i

∣ ↑⟩i,

and its energy is zero with respect to the vacuum energy E0. We now consider the
two-magnon problem. Since the spin Hamiltonian is equivalent to hard-core bosons
(the hard-core bosons are the magnons), we can simply use the two-body solution
for on-site interactions U  with U → ∞ (see volume 1). The T -matrix is a constant
(quasi-momentum independent), and takes the form, for total momentum K ≡ 0,

1

T (z)
=

1

Ud3
− ∫

BZ

d3k

(2πd)3

1

z − 2ε(k)
,
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where ε(k) = −2t ∑
l=x,y,z

(cos(kld) − 1) is the three-dimensional dispersion. In our

case, the hardcore conditon further simplifies equation (5.8), since 1/U = 0. We
will be interested in a dilute magnon gas, so that the main interaction parameter is
the scattering length, and we set z = 0 in equation (5.8). Fortunately, the remaining
integral is a Watson’s integral, with value

W

4t
= ∫

BZ

d3k

(2π)3

1

2ε(k)
,

and W = 0.505462 …. Therefore, the T-matrix at zero energy and in the hard core
limit is given by

1

T (0)
=

0.1263655 …

td3
.

Near the continuum limit, t = ℏ
2/2md2, with m the effective mass, for a non-

relativistic system and, since at zero energy the T-matrix is simply 
T (0) = 4πℏ2a/m, we have

a/d = 0.31487 … .

Therefore, for small but non-vanishing lattice spacings, and low magnon
density, these are described by a repulsive non-relativistic Bose gas with scattering
length a = αd, with α ≈ 0.315. This allows us to use Bogoliubov theory in the
dilute limit and, if N is the number of magnons, we identify the dilute limit as

ρa3 ≪ 1 ⟹
N

L3
s

α3 ≪ 1 ⟹
N

L3
s

≪ 32.

which is independent of the lattice spacing. Note that the above condition is
always satisfied since the number of magnons per site is strictly smaller than 1. We
need to supplement this condition with a condition on the appropriateness of the
non-relativistic approximation. To be conservative, we may use free fermions to
estimate the maximal magnonic filling factor. The highest momentum state
occupied by a fermion would have ∣ k ∣= kFd ∼ 2πN/Ls. Its energy on the lattice
would be ∼ −2t(cos(kFd) − 1). If we set the maximal deviation from the non-
relativistic dispersion to 1%, then we need 
∣ 1 + 2(cos(2πN/Ls) − 1)/(2πN/Ls)

2 ∣< 0.01, which gives N/L3
s < 0.06. This
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is a very safe estimate, but it gives a rough idea of the validity of the non-relativistic
and dilute approximations altogether. For moderate particle numbers, the spin model
can be simulated using quantum Monte Carlo methods. With, say, 100 particles and
right at the limit N/L3

s = 0.06, a cubic lattice with side length Ls ≈ 12 is doable.
This approach shows that, while a system may be strongly interacting, a weak-

coupling theory can be used to describe it. In this case, the Bogoliubov
approximation comes in handy. For simplicity, let us simply quote the Bogoliubov
Hamiltonian, which takes the form [1]

where a†
k
 and ak are bosonic creation and annihilation operators. Since

equation (5.13) is a canonical quadratic form, it is diagonalized by using a
Bogoliubov transformation. Here, we only wish to discuss the ground state energy
and the renormalization of the interaction. The energy per particle in the ground
state is given by

E

N
=

g0ρ

2
−

1

2ρ
∫ dk

(2π)3
[ ℏ2k2

2m
+ g0ρ − E(k)],

where E(k) = √g0ρℏ2k2/m + (ℏ2k2/2m)2 is the quasi-particle energy. We
now need to show that equation (5.14) is finite, within a consistent renormalization
scheme. Since Bogoliubov theory is a second-order perturbation theory for Bose
gases, we should renormalize the bare coupling constant to second order. This is
done in detail in volume 1. The bare coupling constant is expanded as

g0 = gR − g2
R ∫

dk

(2π)3

1

ℏ2k2/m
+ O(g3

R) ≡ gR + C2g
2
R + O(g3

R),

where gR = 4πℏ
2a/m is the renormalized coupling constant for LO-EFT s-

wave interactions. We now expand the quasi-particle energy to second order in the
bare coupling constant, obtaining

HB = ∑
k≠0

ℏ
2k2

2m
a

†
k
ak +

g0ρ

2

∑
k≠0

[(a†
kak + a

†
−ka−k) + (a†

ka
†
−k + aka−k)]+

1

2
Vg0ρ

2,
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Inserting these expressions into the ground state energy per particle, equation
(5.14), we obtain

E

N
=

gRρ

2
+ C2ρ

g2
R

2
−

1

2ρ
∫ dk

(2π)3
[

g2
Rρ

2

ℏ2k2/m
] + O(g3

R) =
gRρ

2
+ O(g3

R).

That is, the usual renormalization procedure makes the Bogoliubov ground
state energy per particle finite. This is what we wanted to show, and we leave the
details of higher order corrections to the interested reader (see [1]).

5.2 Resonant one-dimensional bosons
We study now a very different example, where interactions are typically strong, but
the system is effectively non-interacting. Some residual three-body interactions will
remain, but these are typically feeble and can be understood perturbatively. The
particular system of interest is that of hard-core (or almost hard-core) bosons in one
spatial dimension. If these are hard core, then they are equivalent to spinless
fermions and the results below apply to them as well. Their Hamiltonian is given by

H =
N

∑
i=1

p2
i

2m
+

N

∑
i<j=1

V (xi − xj).

We place the system at a two-boson zero-energy resonance, that is, the even-
wave scattering length diverges (1/a = 0). Then, asymptotically, the two-boson
zero-energy state takes the form, in the relative coordinate,

ψ(x) ∝ 1, ∣ x ∣→ ∞.

At higher energies, the effective range expansion for the even-wave phase
shifts is given by (see volume 1)

−k cot θ(k) =
1

a
−

1

2
rk2 + O(k4).

E(k) =
ℏ

2k2

2m
+ g0ρ −

g2
0ρ

2

ℏ2k2/m
+ O(g3

0)

=
ℏ

2k2

2m
+ gRρ + C2ρg

2
R −

g2
Rρ

2

ℏ2k2/m
+ O(g3

R).
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On resonance, θ(k) = π/2, obviously. For k ≠ 0, we have, to leading order, 
k cot θ(k) = rk2/2. To see how weak the effect of effective range is, consider the
two-boson lowest-energy state in a ring of length L with vanishing total momentum
K. From equation (2.222), we obtain

k =
π

L
+

πr

L2
+ O(L−3).

That is, the correction due to range is one order lower than the leading
correction, since its energy is

ℏ
2k2

m
=

π2

L2
+

2π2r

L3
+ O(L−4).

The effective range correction turns out to be of lower order than the
correction due to the emergent three-body interaction. In the weak-coupling limit,
the energy shift is given by (see volume 1)

E =
ℏ2

2mL2

3π2

log ∣ Q*L ∣
+ O(L2 log (∣ Q*L ∣)−2),

where Q* is the three-body parameter. While the power L−2 is suppressed due
to a quantum anomaly (renormalization of a scale invariant interaction breaking the
scale invariance), the suppression is logarithmic, which is much slower than the
linear suppression for effective range. Therefore, we cannot neglect the three-body
interaction in a resonant one-dimensional gas, and it has to be included at a lower
order than the effective range. In fact, it is necessary in order for the ground state
energy not to vanish in a many-body system and for effective range corrections to
be of any effect. To finalize this section, we perform a mean-field calculation for
resonant bosons. Since the interaction is kinematically equivalent to a two-
dimensional delta interaction, the mean-field correction to the ground state energy
(which vanishes otherwise) requires some care. First, we define the three-body
scattering length a3 as

(Q*a3)2 = 8e−2γ,

where γ is Euler’s constant. The energy shift, including the finite density, is
therefore
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)

E ∝
ℏ2ρ2

m

1

log(ρa3)
,

where the proportionality constant is ambiguous due to the renormalization
procedure. This is simply a matter of scale, and is in principle not a problem if
higher order terms are included. Of course, our correction in equation (5.25)
coincides with the leading order in the full many-body theory [2].

Problems
1. Consider the spin model in equation (5.5), with γ = 6t. Allow v to be non-

zero, and identify the weak-coupling limits of the theory as a function of v.
(Hint: There may be several weak-coupling limits.)

2. Consider three identical particles in one spatial dimension interacting via a
hard-core three-body interaction of the form

V (x1,x2,x3) = V0Θ(a3 − ρ),

where V0 → ∞, a3 > 0 and ρ2 = x2
12 + x2

13 + x2
23

.
a. Solve the three-boson scattering problem and identify the relation

between a3 and the three-body scattering length.
b. Solve the three-fermion problem. Is there a difference between bosons and

fermions? If so, why?
c. Go beyond the second-order virial expansion to obtain the leading order

correction to the pressure for both the bosonic and fermionic systems.
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Appendix A

Definitions of correlation functions

In this appendix, we set the conventions for different correlation functions used
throughout the book

A.1 M-body distribution function
For a system of N identical, spinless particles, we define the M-body (M < N)
distribution function as the marginal probability density function evaluated at positions
r

′
1, … , r

′
M

. If the wave function in the first quantization and in the position
representation is ψ(r1, … , rN), then the M-body distribution function is defined as

gM(r
′
1, … , r

′
M) =

N !

(N − M)!
∫ drM+1 … drN ∣ ψ(r

′
1, … r

′
M , rM+1, … , rN) ∣2.

In operator form, this is simply given by gM = ⟨ĝM(s1, … , rM)⟩, with

ĝM(r1, … , rM) =
′

∑
i1,…,iM

δ(ri1 − r
′
1)δ(ri2 − r

′
2) … δ(riM − r

′
M),

where the primed sum indicates that ij ≠ il for j ≠ l.
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We consider now a system of N spin-1/2 fermions, with N↑ fermions with 
σz = +1 and N↓ = N − N↑ fermions with σz = −1. The wave function is given by 
ψ(r1σ1, … , … , rNσN). In the book, we only use the pair distribution function,
which we call g(r, r′) ≡ g2(r, r′). It is given by

g(r, r′) = ⟨ĝ2(r, r′)⟩ = g↑↑(r, r′) + g↓↓(r, r′) + g↑↓(r, r′),

where

gσσ(r, r′) ≡
Nσ!

(Nσ − 2)!
∫ dr3, … , drN ∣ ψ(rσ, r′σ, r3σ3, … , rNσN) ∣2,

g↑↓(r, r′) ≡ N↑N↓ ∫ dr3, … , drN ∣ ψ(r↑, r′↓, r3σ3, … , rNσN) ∣2.

For homogeneous systems, it is convenient to define

g2(r) = ∫ dRg2(R − r/2, R + r/2),

gσσ′(r) = ∫ dRgσσ′(R − r/2, R + r/2),

where a slight abuse of notation seems harmless given the number of arguments
in each function.

On a one-dimensional lattice, for spinless bosons or fermions, in which the
positions the particles can occupy are xi ∈ Zd, with d the lattice spacing, the two-body
correlation function is defined as

g2(x,x′) = N(N − 1)dN−2 ∑
x3,…,xN

∣ ψ(x,x′,x3, … ,xN) ∣2.

Here, the normalization condition for the wave function is

dN ∑
x1,…,xN

∣ ψ(x1, … ,xN) ∣2= 1,

and one-dimensional, one-particle scalar products are defined via

⟨ϕ ∣ ψ⟩ = d∑
x

ϕ*(x)ψ(x).

This notation emphasizes the pass to the continuum limit (d → 0), where
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⟨ϕ ∣ ψ⟩ → ∫ dxϕ*(x)ψ(x), d → 0.

A.2 Pair density function
For completeness, we include the definition of the pair density function, and relate it to
the pair distribution function when the comparison is relevant, as well as to examine
notation regarding short-range correlations and the contact. The pair density function
is defined via ρ(N)

2 (r) = ⟨ρ̂ (N)
2 (r)⟩, with

ρ̂
(N)
2 (r) =

1

r2

N

∑
i<j=1

δ(rij − r).

For a homogeneous, spherically symmetric system of identical particles, we
obtain

ρ
(N)
2 (r) = 2πg2(r).

The pair density for a two-body system with relative wave function ϕ2(r), which
we denote ρ2(r), is defined as

ρ2(r) = ∫ dΩ ∣ ϕ2(r) ∣2=∣ R(r) ∣2,

with the last equality being valid for solid-angle normalized spherically
symmetric systems.

For bosons, in chapter 1 we found that ρ(N)
2 (r) → C

(N)
2 ρ2(r) which, for the pair

distribution function g2(r) implies

g2(r) → C
(N)
2

∣ R(r) ∣2

2π
.

A.3 Static structure factor
For a spinless system, we define the static structure factor as

S(k) = 1 +
1

N
∫ drdr′e−ik⋅(r−r′)[g2(r, r′) − g1(r)g1(r′)].
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If the system is homogeneous, then the density g1(r) ≡ ρ is constant, and changing
integration variables to centre of mass (R = (r + r′)/2) and relative (s = r − r′)
coordinates, the structure factor becomes

S(k) = 1 +
1

N
∫ dse−ik⋅s ∫ dR[g2(R − s/2, R + s/2) − ρ2].

Since g2(r, r′) → ρ2 as s → ∞, we define g̃2(r) ≡ g2(r) − ρ2, and we obtain

S(k) = 1 +
1

N
∫ dre−ik⋅rg̃2(r),

valid for a homogeneous system. If, moreover, the interaction between particles
is spherically symmetric, so is g2(r) ≡ g2(r), and the structure factor is simplified to

S(k) = 1 +
4π

Nk
∫ drr sin(kr)g̃2(r).
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